ZXAD: High-volume Attack Mitigation for Tor

Akshaya Mani
University of Waterloo
Waterloo, ON, Canada
akshaya.mani@uwaterloo.ca

Ian Goldberg
University of Waterloo
Waterloo, ON, Canada
iang@uwaterloo.ca

ABSTRACT
The Tor anonymity network is often abused by attackers to (anonymously) convey attack traffic. These attacks abuse Tor exit relays (i.e., the relays through which traffic exits Tor) by making it appear the attack originates there; as a result, many website operators indiscriminately block all Tor traffic (by blacklisting all exit IPs), reducing the usefulness of Tor.

Recent research shows that majority of these attacks are ones that generate high traffic volume (e.g., Denial-of-Service attacks). This suggests that a simple solution such as throttling traffic flow at the Tor exits may permit early detection of these attacks, improve overall reputation of exits, and eventually prevent blanket blocking of Tor exits. However, naively monitoring and throttling traffic at the Tor exits can endanger the privacy of the network’s users.

This paper introduces ZXAD (pronounced “zed-zad”), a zero-knowledge based private Tor exit abuse detection system that permits identification of otherwise unlinkable connections that are part of a high-volume attack. ZXAD does not reveal any information, apart from the fact that some user is conveying a high volume of traffic through Tor. We formally prove the correctness and security of ZXAD. We also measure two proof-of-concept implementations of our zero-knowledge proofs and show that ZXAD operates with low bandwidth and processing overheads.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols; • Networks → Network privacy and anonymity; Security protocols; • Theory of computation → Cryptographic protocols.

KEYWORDS
Tor; Exit abuse; Zero-knowledge Proofs

1 INTRODUCTION
Tor [25] is used by millions of people daily for anonymous communication over the Internet. While Tor has many legitimate uses such as whistleblowing, censorship avoidance, and protecting one’s security and privacy online [54], it is often abused by attackers to (anonymously) convey attack traffic supporting spam campaigns, vulnerability scanning, content scraping, etc. [47].

Since all traffic exits Tor through a set of publicly listed special relays, called the Tor exits, these relays often end up being blacklisted for all the malicious (or objectionable) content routed through Tor. Moreover, even the actions of a single malicious user could trigger the automated abuse detectors at the destination web servers, cause websites/hosting providers to blacklist the exit, and in turn block all users connecting through that exit; i.e., fate-sharing.

Although the problem at its core is fate-sharing, given Tor’s reputation of transiting undesired traffic [2, 16, 31, 47], many IP blacklists [4, 37, 51] proactively blacklist all Tor exit IP addresses soon after they are listed in the Tor consensus. Singh et al. [51] found that about 7% of 84 large commercially deployed IP blacklists proactively block Tor. Indeed, all websites/hosting providers that use such blacklists to filter traffic would also end up blocking Tor exits by default [64]. Eventually, over time the entire network may become unusable. Abuse (and poor reputation) of Tor exits therefore tends to be one of the greatest threats against the growth of Tor.

A majority of the attacks originating from Tor are those that generate high traffic volume (e.g., SSH brute-force, denial of service, automated scanning, etc.) [2, 16, 31]. Singh et al. [51] also found similar proportions of attack traffic when analyzing 8,370 non-DMCA email complaints from exit operators — nearly 90% were high-volume traffic abuse, such as excessive connection attempts, scanning, and brute-force login attempts. This suggests that a simple solution, such as rate limiting the number of connections allowed per client to a target destination at the exits, could potentially stop most of these attacks and will eventually improve the reputation of the Tor exits. For instance, the threshold number of connections can be set to 1 for an SSH connection, 10 for websites whose resources appear on multiple pages, or unlimited for very popular destinations such as facebook.com or google.com.

However Tor’s anonymity protections can make such rate limiting challenging: (i) multiple connections from the same client are supposed to be unlinkable, yet in order to limit per-client connections, the exits must be able to identify connections coming from the same client and (ii) naively monitoring and throttling attack traffic using an Intrusion Detection System (IDS), such as Zeek [63] or Suricata [45], at the Tor exits can pose significant privacy risk to the network’s users. Besides, monitoring users’ communications is antithetical to the Tor Project’s goals.

To address these challenges, we introduce ZXAD (pronounced “zed-zad”), a zero-knowledge based exit abuse detection system for Tor. ZXAD permits early identification of otherwise unlinkable connections that are part of a high-volume attack in a privacy-preserving way. It incurs low bandwidth and moderate processing
overheads and does not require any significant changes to Tor’s existing design.

Similar to any other rate limiting solution, ZXAD fundamentally requires some way to distinguish between many users making one connection each to some particular webserver, from one user making many connections (a Sybil attack). ZXAD relies on the existence of a unique ‘one-per-person’ identifier [29] for every Tor client, to provide resistance against Sybil attacks. Nonetheless, ZXAD is sufficiently general to be adapted for any type of unique client identifier (even ones with low entropy, such as an IP address).

In ZXAD, clients prove possession of the identifier (once) in zero-knowledge and obtain a virtual token dispenser. This allows a client to dispense at most n anonymous and unlinkable tokens per ZXAD epoch for every destination. The value of n is set based on the popularity of the destination (e.g., 1 for port 22). A client uses these tokens to authenticate to the Tor exits every time it makes a connection to a new destination using the same exit or the same destination using a different exit. This way a client has to “double-spend” (or re-use) a token to make more than n connections to a target destination, linking them.

Malicious clients can still try to connect using different exits — but then the Tor exits can further forward the token to the target destination, which has a “global view” to rate limit double-spending clients. Importantly, these tokens are unlinkable; i.e., given two different tokens neither the Tor exit nor the destination server can tell if the tokens were from the same Tor client or not. Therefore, the server and the exit learn no other information apart from the fact that some client is double-spending.

While it may be easier for websites to blacklist all exit IP’s proactively than providing support for a rate-limiting solution (such as ZXAD), doing so could cause a loss in revenue. A report from Akamai [2] highlights that Tor users are just as likely to make purchases from revenue-generating websites as non-Tor users [51].

In the following sections, we introduce ZXAD, formally prove its correctness and security, implement our zero-knowledge proofs, and demonstrate that ZXAD operates with low bandwidth and processing overheads.

2 BACKGROUND

In this section, we present a brief overview of Tor and review some well-known cryptographic primitives and protocols that are used as building blocks in the construction of ZXAD.

2.1 Tor

Tor [25] provides anonymity by relaying traffic via “anonymous paths”, called circuits, that are constructed by randomly selecting multiple (usually three) relays. Along the path, layered encryption is used to conceal the actual sender (i.e., the Tor client) and the receiver (i.e., the destination), so that each relay knows only the previous hop and the next hop. Traffic flows down the circuit in fixed-size cells carrying encrypted routing information and data [24].

The first relay in a circuit is usually the guard, a Tor relay that is relatively stable, fast, and reliable. The next hop, the middle relay, relays traffic from the guard to the final relay, called the exit, which finally establishes a TCP connection to the intended destination. Since traffic exits the Tor network through the exit relays, they are often blamed when something malicious is routed through them.

Tor maintains long-standing TLS connections between relays that are adjacent on some Tor circuit. Communications over different circuits that share a hop between two relays are sent over the same TLS connection. A Tor stream is analogous to a regular TCP connection between the Tor client and a target destination. Several streams may be multiplexed over the same circuit. The Tor client usually switches to a new circuit every ten minutes.

To ensure all Tor clients have the same “view” of the Tor network, the Tor directory authorities (DirAuths), a set of nine dedicated servers, periodically publish a consensus document, containing information on all currently running relays that make up the Tor network. The consensus is reached using the Tor directory protocol [53], a majority voting protocol which makes sure that only “updates” signed by a majority (at least five) of the authorities are added to the consensus document.

Creating Tor circuits.

A Tor client maintains a single connection to each of its guards, through which multiple circuits may be created. To begin creating a new circuit, the client first sends a create cell to the Tor guard in the chosen path, initiating a Diffie-Hellman handshake. The guard then responds with a created cell, completing the handshake and the first hop of the circuit. Next, to extend the circuit one hop further, the client sends a relay extend cell to the middle node, specifying the address of the middle node, and the Diffie-Hellman handshake for the middle node. On receiving the relay extend cell, the guard copies the handshake into a create cell, and passes it to the middle node to extend the circuit. The middle node then responds with a created cell to the guard, which then encrypts the payload into a relay extended cell and passes it back to the client. Finally, to extend the circuit to a third hop (usually an exit relay), the client informs the middle relay to extend the circuit one hop further, which proceeds in a similar way as above, and the circuit is complete. Once the Tor client has established the circuit, it sends begin cells to create streams to a specified destination server and port, and relay data cells that carry end-to-end stream data.

Tor Browser.

The Tor Browser first creates a new circuit for each unique domain entered by the user in the browser address bar. It then creates a new stream over this circuit for retrieving the web page. Subsequent streams that are created for fetching the embedded resources, such as images, scripts, etc., are multiplexed over the same circuit.

2.2 Preliminaries

We now briefly review some concepts and background that are necessary for understanding ZXAD.

Bilinear groups.

Let G be an asymmetric bilinear group generator that takes as input a security parameter k and returns a tuple $A = (g, G_1, G_2, e, g_1, g_2, H_1, H_2)$ where G_1, G_2, and G are cyclic multiplicative groups of prime order q, $e : G_1 \times G_2 \rightarrow G$ is an efficient and non-degenerate bilinear map, g, g_1, g_2 are generators of the groups G_1 and G_2 respectively, and $H_1 : \{0, 1\}^* \rightarrow G_1$ and $H_2 : \{0, 1\}^* \rightarrow G_2$ are hash functions that map binary strings to elements of G_1 and G_2 respectively.

ZXAD uses Type III pairings [27]: $G_1 \neq G_2$ and there exists no efficiently computable homomorphisms between G_1 and G_2. In other
words, the Symmetric eXternal Diffie-Hellman (SXDH) assumption holds; i.e., the Decisional Diffie-Hellman (DDH) assumption [7] holds in both G_1 and G_2.

BLS signature. A primary primitive used in our construction is the BLS signature [8]. We use the notation BLS to define a variant with public key in G_1 and signature in G_2.

Let $A = (g, \Omega_1, \Omega_2, \xi, g_1, g_2, H_1, H_2)$ be the output of an asymmetric bilinear group generator. In BLS, a keypair (ν, V) is generated by choosing a private key $\nu \in \mathbb{Z}_q$ and setting the public key to $V = g_2^\nu$. A message $M \in \{0, 1\}^*$ is signed by producing the signature $\sigma = H_2(M)^\nu$. A signature σ on message M is valid if and only if $\nu = \frac{1}{\nu} e(g_1, \sigma) \equiv e(V, H_2(M))$.

Zero-knowledge proofs. Zero-knowledge proofs (ZKPs) [28] limit the amount of information transferred between a prover P and a verifier V in a cryptographic protocol. Throughout this paper, we make use of the Generalized Schnorr Proofs (GSPs) introduced by Camenisch and Stadler [13] and formally defined by Camenisch et al. [15] to prove knowledge and relationships of discrete logarithms. The Σ-protocol for such proofs are usually defined as a three-phase interactive protocol. Non-interactive versions of such proofs can be obtained using the Fiat-Shamir heuristic [26].

A ZKP satisfies the following three properties: (i) Completeness guarantees that a valid proof will always be accepted by the verifier; (ii) Soundness guarantees that only a valid proof will be accepted by the verifier; and (iii) Zero-knowledgeness guarantees that a valid proof does not reveal anything about the witnesses.

zkSNARKs. Informally, a Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zkSNARK) [6] is a proof construction, where one can prove the truth of a statement without revealing any information (besides the veracity of the statement), and without any interaction between the prover and verifier. Additionally, it satisfies the succinctness condition; i.e., the proof size and verification time are constant even for arbitrarily large statements.

Shamir’s secret-sharing scheme. A threshold based secret-sharing scheme by Shamir [50] allows subsets of t or more parties to recover a split secret. It distributes the secret using a $t-1$ degree polynomial and is based on the idea that at least t points are required to reconstruct a polynomial of degree $t - 1$. Therefore, no group of fewer than t parties can reconstruct the secret.

3 OVERVIEW

We first present the current state of Tor exit abuse detection and mitigation. Next, we introduce ZXAD by describing unique ‘one-per-person’ identifiers, the participants, threat model, the system model, and the different phases of the protocol.

3.1 Abuse of Tor exits

Tor currently does not have any built-in mechanisms to detect malicious users that abuse benign Tor exits by conveying attack traffic. A malicious Tor user can abuse Tor exits in three ways: (i) circuit level — by sending malicious streams within a single circuit, (ii) exit level — by generating multiple malicious circuits through a single exit, and (iii) Tor level — by generating malicious circuits through multiple exits.

The circuit-level attacks are the easiest to mitigate — the exits can just rate limit the number of streams per circuit. However, the exit-level and Tor-level attacks are much harder to mitigate since exits cannot perceive different circuit connections that are part of a large-volume attack (by a single Tor client) as connections coming from the same client. This is because the traffic from different circuits are **unlinkable** — given two Tor circuits, the exits cannot tell if the circuits originate from the same Tor client or not.

Currently, opportunistic onions [49] by Cloudflare is the closest solution to evade exit-level and Tor-level attacks. It relies on clients repeating the time-consuming “rendezvous protocol” to rate limit the number of circuits created by each Tor client. However, their solution only works for Cloudflare-hosted sites (i.e., ~10% of the Internet [48]), it does not stop exits from being abused or service providers (at large) from blocking Tor. Section 4.2 describes how ZXAD can be used to mitigate exit-level and Tor-level attacks.

3.2 Unique Identifiers

As briefly mentioned in Section 1, ZXAD relies on the existence of a unique ‘one-per-person’ identifier [29] for every Tor client, to provide resistance against Sybil attacks.

This does not mean all users of Tor must possess a unique client identifier to access Tor. Websites under a large-volume attack would still, as today, block Tor traffic without ZXAD tokens, but Tor users participating in ZXAD could still be allowed access. We emphasize that users who do not wish to take advantage of this privilege can still access Tor in the regular way; i.e., without proving possession of any unique identifier.

ZXAD is sufficiently general to be adapted for any type of ‘one-per-person’ identifier, such as an electronic government-issued ID [29], a valid X.509 certificate chain, and so on. Moreover, ZXAD does not require the identifier to be high entropy, and where possible, will allow the client to prove its possession in zero knowledge [23]. For reference, we list some unique identifiers that the client can use, their advantages, and disadvantages in Appendix A.

3.3 Participants and threat model

ZXAD is a distributed system that relies on multiple entities to achieve its privacy and security goals. The participants of the system are the Tor clients, the nine DirAuths, the exits, and the end server. We now detail the trust assumptions on the different ZXAD entities.

Tor clients. Tor clients can behave maliciously: (i) they can try to make more than the allowed number of connections to a target website or (ii) they can try to impersonate other honest clients such that an honest client’s connections are rate-limited by the target destination before the threshold is reached. As mentioned in Section 3.2, ZXAD uses a unique **client identifier** to detect such abuse by a Tor client.

Malicious clients can also cause a denial-of-service by submitting far too many long-term and periodic key (described in Section 3.4 below) requests to the DirAuths. However, the DirAuths can rate-limit these requests without affecting honest clients much (for details see Section 9).

DirAuths. As with Tor, in ZXAD we assume that at least five out of the nine DirAuths are honest. If a majority of the DirAuths...
are compromised, then the DirAuths can even compromise Tor, let alone relay attack traffic through exit nodes by exploiting ZXAD.

Malicious DirAuths do not learn any critical information about the client (or its unique identifier) as the clients are assumed to prove possession of their identifiers with a Cinderella-style [23] verifiable computation protocol.

Exit nodes and servers. Malicious exits (and end servers) can collude with malicious DirAuths and try to deanonymize a user. However, ZXAD guarantees that no information about an honest client is ever leaked.

In short, ZXAD is secure as long as a majority of the DirAuths are honest. Informally, the privacy guarantees of ZXAD are (i) A set of honest exits (collectively) will accept no more than n_3 connections (to a target destination S) from a single Tor client in any given epoch and (ii) no information about the identity of an honest Tor client is ever exposed. We provide the formal security definitions and proof in Section 5.

3.4 System model

The workflow of ZXAD begins when a Tor client joins the Tor network for the first time. During the bootstrapping process, the client connects to the DirAuths and obtains a deterministic signature on its identifier from the DirAuths (by proving possession of the identifier in zero knowledge). The client uses this signature as its long-term key in the Tor network. Note that this is a one-time operation. As already mentioned neither the client identifier nor its long-term key in the Tor network. Note that this operation is run only once per Tor client, when they join the Tor network for the first time. This step is done so that during every run of the rekeying phase, the DirAuths just verify

the long-term key. Unlike the long-term key, this signature is valid only for a short period (e.g., a week) and hence called the periodic key. The client updates its periodic key every period (e.g., weekly).

ZXAD operates in 10-minute epochs. Figure 1 illustrates how the different phases of ZXAD are performed when a Tor client connects to a connection-throttling destination via a three-hop circuit. As shown in Figure 1, the destination requests tokens only when it is facing a large-volume attack from Tor (see Section 9 for implementation details). When the destination requests a token, the client (generates and) sends an unlinkable and unique stream token and a zero-knowledge proof (that the stream token is well-formed) to the exit node. Recall that the maximum number of unlinkable connections allowed per epoch, n_3, to a target destination S is preset based on the popularity of the destination (e.g., 1 for port 22).

Therefore, the Tor client can create at most n_3 unique stream tokens per epoch for every destination S and must (linkably) open multiple streams in a single circuit to make more than n_3 connections. On receiving the stream token and the zero-knowledge proof, the exit accepts the token if and only if (i) the proof is valid and (ii) it has not previously seen this token in the current epoch. The latter check ensures that the client does not “double spend” a token.

In simple terms, ZXAD provides a virtual token dispenser (to each Tor client) that allows the client to dispense at most n_3 anonymous and unlinkable tokens per epoch for every destination S.

3.5 ZXAD Phases

The ZXAD protocol has seven phases (the post-initialization phases are illustrated in Figure 2):

Initialization phase. The initialization phase involves the configuration of system parameters and the generation of threshold 5-out-of-9 long-term and periodic signing keys for the DirAuths.

Long-term signing key. The long-term signing key is comparable to the long-term identity keys in Tor [25], which are usually never changed.

We use additive secret sharing [5] to generate additively shared long-term and periodic signing keys once at the initialization phase, and then use share conversion [20] to turn them into a Shamir-shared key. This way, the later rekeying phases can be performed locally, without any communication among the DirAuths. We describe this key generation protocol in Section 4.3.

Long-term key generation phase. In the long-term key generation phase, the client obtains its long-term key from the DirAuths. Note that this operation is run only once per Tor client, when they join the Tor network for the first time. This step is done so that during every run of the rekeying phase, the DirAuths just verify
a signature (with their joint long-term secret key) on the client’s identifier, rather than verifying the identifier itself.

Rekeying phase. In the (unlikely) event where a majority of the DirAuths’ periodic secret keys are compromised in the same period, the adversary would be able to brute-force low-entropy client identifiers (e.g., IP addresses).

Therefore to limit the amount of time a periodic key is vulnerable, the DirAuths periodically compute a new shared secret signing key (and the associated joint public key) for the next period, in a forward-secret manner.

Note that the period duration can be anywhere between a day and several months. A small duration (such as a day) would increase the load on the DirAuths as they would need to issue a periodic key to each Tor user every day. Similarly, a longer duration (such as several months) would increase the amount of exposure in the unlikely case where a majority of the DirAuths’ periodic secret keys are compromised. Therefore, to moderate the performance and security risks involved, we suggest a reasonable default period of one week. Throughout the paper, we refer to the period as the ZXAD period (or the period in general).

As described below in the key publishing phase, the clients and the exits use the Tor’s existing consensus protocol to obtain copies of the DirAuths’ public key. Additionally, every Tor client obtains a periodic key (i.e., runs the periodic key generation phase) once per period, since the DirAuths’ joint key has changed.

Key publishing phase. The key publishing phase is performed once, at the beginning of every ZXAD period. The DirAuths publish the current and the next period public keys in the Tor consensus.

The clients and the exits obtain the DirAuths’ public key when they update their consensus. While the exits always obtain the current period’s public key, the clients obtain the current or the next period’s public key depending on which keypair is used to generate the periodic key (in the periodic key generation phase described below).

Periodic key generation phase. In the periodic key generation phase, the client obtains the periodic key (for the current or the next ZXAD period), by specifying which keypair the DirAuths must use for generating the periodic key. Although the client can obtain both the current and the next period’s key (in the current ZXAD period itself), it can only use the current periodic key to generate the current period’s circuit and stream tokens (described below). However, we still recommend that a client obtains its periodic key in advance to evade deanonymization by malicious DirAuths using traffic correlation [36]. We note that as long as the client does not use Tor right after obtaining the current period’s key from the DirAuths, it is not prone to such deanonymization attacks.

In short, this phase produces a deterministic unique short-term key that can be used to produce the stream and circuit tokens (described below) that are globally unique to a given long-term key (or an individual client when using ‘one-per-person’ identifiers). The tokens produced are unlinkable; i.e., given two different tokens the Tor exit (or the destination server) cannot tell if the tokens were from the same Tor client or not.

Circuit token showing and verification phase. A client sends a circuit token and a zero-knowledge proof along with the first stream token (within a circuit) to the exit. These tokens and proofs can be computed offline in advance. The proof ensures that the client knows the identifier (embedded in the token) used to create the periodic key, without revealing it. The circuit token and proof are purely for optimization purposes and reduce the verifying time at the exit for subsequent stream tokens sent within the circuit.

Stream token showing and verification phase. As mentioned before, ZXAD operates in 10-minute epochs, in order to limit the amount of time a stream token is usable by a Tor client. This is comparable to the default circuit lifetime of ten minutes in Tor. Throughout this paper, we refer to this ten-minute period as a ZXAD epoch and this should not be confused with the hour-long Tor epoch used to create consensuses.

Every time the client creates a stream to a new destination under a large-volume attack within any given circuit, it sends a stream token and a zero-knowledge proof to the exit that the token is valid. The exit accepts the token if and only if the proof is valid and it has not seen that stream token before in the ZXAD epoch (in which the associated circuit was created). Otherwise, it drops the circuit.

4 PROTOCOL DETAILS

We first describe a basic version of the ZXAD protocol in a single.DirAuth setting. Next, we describe how ZXAD can be used to combat exit-level and Tor-level attacks. Finally, we extend the basic ZXAD protocol to a t-out-of-n DirAuths setting (in Section 4.3) and describe the changes pertaining to handling distributed DirAuths in each of the phases.

4.1 Basic ZXAD Protocol

We now explain a basic version of the ZXAD protocol in a single.DirAuth setting, which is clear and easy to understand.

Initialization phase. Let \(\Lambda = \langle q, G_1, G_2, G_T, e, g_1, g_2, H_1, H_2 \rangle \) be the output of an asymmetric bilinear group generator and \(Y_1 \overset{\mu}{\leftarrow} G_1 \) a public parameter. Let the BLS keypairs \(\langle \rho, P = g_1^\rho \rangle \) and \(\langle \alpha, A = g_2^\alpha \rangle \) be the long-term and the periodic keypair of DirAuth \(\mathcal{A} \).

Long-term key generation phase. Consider a Tor client \(C \) with a unique identifier \(ID_c \), which joins the Tor network for the first time. During the bootstrapping process, \(C \) proves possession of \(ID_c \) in zero-knowledge\(^1\) (i.e., without revealing \(ID_c \) to \(\mathcal{A} \)). In response, the DirAuth issues a (blind) BLS signature, which \(C \) unblinds to obtain its long-term key \(\sigma_p = H_2(ID_c)^P \).

Key publishing and Rekeying. At the beginning of every period, the DirAuth generates the BLS keypair \(\langle \sigma, A = g_2^\sigma \rangle \) for the next period, and publishes the current and the next period public keys in the Tor consensus. The Tor clients and the exits obtain the DirAuth’s public key when they update their consensus.

Periodic key generation phase. The periodic key generation phase comprises an offline and an online phase (as summarized in the left side of Figure 3):

Offline phase. \(C \) chooses random \(r_c \overset{\mu}{\leftarrow} \mathbb{Z}_q \) and blinds the hash \(B = H_2(ID_c) \) of its identifier and its long-term key \(\sigma_p \). This ensures that the DirAuth and the guard do not learn \(B, \sigma_p \), or \(\sigma_A \) (below) in the online phase.

\(^1\)The details will depend on the exact nature of the ‘one-per-person’ identifier, but as this is a one-time operation, its efficiency is not of the utmost importance. As mentioned above, a Cinderella-style [23] verifiable computation protocol could typically be used.
Periodic Key Generation

\[C \]

Offline:
- \(r_c \leftarrow \mathcal{D}_r \)
- \(B \leftarrow H_I(ID_c) \)
- \(\tilde{B} \leftarrow B^c \)
- \(\tilde{\sigma}_B \leftarrow \sigma_B^c \)

Online:
- \((\tilde{B}, \tilde{\sigma}_B) \rightarrow \text{guard} \)
- Blind Signature Transfer
 - \(e(g_B, \tilde{\sigma}_B) = e(\tilde{B}, \tilde{\sigma}_B) \)
 - \(\tilde{\sigma}_B \leftarrow \tilde{B}^a \)

C stores the blinded values \(\tilde{B} = B^c \), \(\tilde{\sigma}_B = \sigma_B^c \) and \(r_c \) for use in the online phase. Note that C can generate and store multiple \((r_c, \tilde{B}, \tilde{\sigma}_B) \) values any time after obtaining its long-term key.

Online phase. After every rekeying when the DirAuth’s signing key changes, C performs the online key generation (at most one period in advance):

1. (1) To obtain its periodic key, C forwards a \((\tilde{B}, \tilde{\sigma}_B) \) tuple (from the offline phase) through one of its guards to \(\mathcal{A} \). C also specifies which periodic keypair (i.e., the current or the next ZKAD period) \(\mathcal{A} \) should use.

2. (2) \(\mathcal{A} \) then performs a blind signature transfer: i) it first verifies if \(\tilde{\sigma}_B \) is a valid BLS signature on \(\tilde{B} \) using its long-term public key \(P \); ii) it then computes a blind BLS signature \(\tilde{\sigma}_B = \tilde{B}^a \) using the requested period’s secret key \(a \). Note that, the DirAuth does not learn \(ID_c \), or its hash \(B \) (due to the blinding done in the offline phase). \(\mathcal{A} \) then sends \(\tilde{\sigma}_B \) back to C through the same guard.

3. (3) Finally, C verifies if the BLS signature \(\tilde{\sigma}_B \) is valid using the DirAuth’s periodic public key \(A \) (for the requested period). If the signature does not verify, it aborts. C then unblinds \(\tilde{\sigma}_B \) and obtains \(\sigma_B = B^a \), the DirAuth’s BLS signature on \(B \). C then uses this signature as its periodic key (for the corresponding period) in the remainder of the protocol.

Note that the client can of course unblind wrongly to produce a valid signature on some other random (unknown) hash value, but then the BLS signature here will not match the circuit token proof (defined below), and the client’s circuit tokens will not verify. That is, \(\tilde{\sigma}_B \) is useless without the correct \(r_c \) value. Therefore, \(C \) need not separately prove knowledge of \(r_c \).

We observe that \(\sigma_B \) thus obtained is a deterministic function of \(ID_c \) and \(a \), has high entropy, and cannot be brute-forced. Therefore, we use \(\sigma_B \) to produce randomized circuit and deterministic stream tokens (defined below) that are bound to the client C.

Circuit token showing and verification phase. At this point C has obtained a blind signature \(\sigma_B \) from \(\mathcal{A} \), has an active circuit through some exit \(X \), and has established a connection to some connection-throttling destination server-port combination, represented as \(S \). If \(C \) is the first destination (within the circuit) requesting for a ZXAD token, then C produces a circuit token \(T_c \) and a zero-knowledge proof \(\Pi_{T_c} \):

1. (1) **Token:** As summarized in the center of Figure 3, the token \(T_c = (g''_z, \sigma''_A) \) is a randomized commitment to the periodic key \(\sigma_B \). C computes the circuit tokens offline (any time after getting the new periodic key) by just choosing some random \(r_c, B, \tilde{\sigma}_B \).

2. (2) **Zero-Knowledge Proof:** C then constructs a non-interactive zero-knowledge proof \(\Pi_{T_c} \) (that \(T_c \) is well formed):

\[
\Pi_{T_c} = PK\left(r_c, \sigma_B, B, ID_c; g''_z = g''_z \wedge \sigma''_A = \sigma''_B \right) \middle/ \left[\text{sig}_{\mathcal{A}, A}(B) = \sigma_B \right] \middle/ \left[B = H_2(ID_c) \right]
\]

where \(\text{sig}_{\mathcal{A}, A}(B) = \sigma_B \) means that \(\sigma_B \) is a valid BLS signature on message \(B \) (with \(B \) already hashed, as \(B = H_2(ID_c) \)) by \(\mathcal{A} \) with the secret key corresponding to the public key \(A \).

The proof \(\Pi_{T_c} \) proves that: (i) the client knows some \(r_c \) such that \(g''_z = g''_z \) and \(\sigma''_A = \sigma''_A \); (ii) \(\sigma_B \) is a valid BLS signature on some \(B \) verifiable using the DirAuth’s periodic public key \(A \); and (iii) \(B \) is the hash of some \(ID_c \) that the client knows. The latter part ensures that \(C \) has not unblinded the BLS signature (produced in the periodic key generation phase above) to a valid signature on some other random (unknown) message.

C then sends \((T_c, \Pi_{T_c}) \) to \(X \) only for the first connection-throttling destination within the circuit.

On receiving \((T_c, \Pi_{T_c}) \), the Tor exit verifies the proof to check if \(T_c \) is well formed, and terminates the circuit otherwise.

Stream token showing and verification phase. At this point C has obtained a blind signature from \(\mathcal{A} \), has an active circuit through some exit \(X \), and has established a connection to some connection-throttling destination server-port combination, represented as \(S \). As defined earlier, let \(n_c \) be the maximum number of allowable unlinkable connections per client to destination \(S \). The

Figure 3: An overview of the periodic key generation (left), circuit token showing & verification (center), and stream token showing & verification (right) phases

<table>
<thead>
<tr>
<th>Periodic Key Generation</th>
<th>Circuit Token Showing and Verification</th>
<th>Stream Token Showing and Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offline:</td>
<td>Offline:</td>
<td>Offline:</td>
</tr>
<tr>
<td>(r_c \leftarrow \mathcal{D}_r)</td>
<td>(r_c \leftarrow \mathcal{D}_r)</td>
<td>(r_c \leftarrow \mathcal{D}_r)</td>
</tr>
<tr>
<td>(B \leftarrow H_I(ID_c))</td>
<td>(g'_z \leftarrow g'_z)</td>
<td>(h_{n_c} \leftarrow H_1(s_1, . . . , s_{n_c}))</td>
</tr>
<tr>
<td>(\tilde{B} \leftarrow B^c)</td>
<td>(\tilde{\sigma}_B \leftarrow \sigma_B^c)</td>
<td>(T_s \leftarrow t_{h_2})</td>
</tr>
<tr>
<td>(\tilde{\sigma}_B \leftarrow \sigma_B^c)</td>
<td>(T_s \leftarrow t_{h_2})</td>
<td>(h_{n_c} \leftarrow H_1(s_1, . . . , s_{n_c}))</td>
</tr>
</tbody>
</table>

Online:
- \((\tilde{B}, \tilde{\sigma}_B) \rightarrow \text{guard} \)
 - Blind Signature Transfer
 - \(e(g_B, \tilde{\sigma}_B) = e(\tilde{B}, \tilde{\sigma}_B) \)
 - \(\tilde{\sigma}_B \leftarrow \tilde{B}^a \)

- \((\tilde{B}, \tilde{\sigma}_B) \rightarrow \text{guard} \)
 - Blind Signature Transfer
 - \(e(g_B, \tilde{\sigma}_B) = e(\tilde{B}, \tilde{\sigma}_B) \)
 - \(\tilde{\sigma}_B \leftarrow \tilde{B}^a \)

Online:
- \((T_c, \Pi_{T_c}) \rightarrow b \leftarrow \text{VerifyPrf}(T_c, \Pi_{T_c}, g'_z, g'_z, A) \)
 - \(b \leftarrow 1 \)

Online:
- \((T_c, \Pi_{T_c}) \rightarrow b \leftarrow \text{VerifyPrf}(T_c, \Pi_{T_c}, g'_z, g'_z, A) \)
 - \(b \leftarrow 1 \)

\[C \]

\[\mathcal{A} \]

\[X \]
client obtains the appropriate value of n_ℓ for each destination S from the Tor consensus (see Section 9).

When the destination dynamically requests stream tokens, C produces a stream token T_s and a zero-knowledge proof Π_{T_s} as follows:

1. **Token**: The token T_s is a deterministic function $f(\sigma_n, cnt_n, n_\ell, n_s)$, where cnt_n is a counter that keeps track of the number of connections the Tor client C has made to the target destination S in a given ZXAD epoch and n_ℓ is the ZXAD epoch number.

Let $\langle h_1 = H_1(1, S, n_\ell) \ldots h_{n_\ell} = H_1(n_\ell, S, n_\ell) \rangle$ be a public n_ℓ-value list of elements of \mathbb{G}_1 corresponding to S. Note that both the client and the exit (or end server) can compute these values locally after obtaining the appropriate value of n_ℓ from the Tor consensus. As summarized in the right of Figure 3, C computes the stream token $T_s = e(h_\ell, \sigma_n), 1 \leq \ell \leq n_\ell$ (where ℓ is the current value of the counter cnt_n).

2. **Zero-Knowledge Proof**: C constructs a non-interactive zero-knowledge proof Π_{T_s} (that T_s is well formed):

$$\Pi_{T_s} = PK\{ (\sigma_n, \ell) : T_s = e(h_\ell, \sigma_n) \land 1 \leq \ell \leq n_\ell \}
\cap \{ \sigma_n = \sigma_n(T_s) \}$$

where $\sigma_n(T_s)$ denotes the σ_n in the circuit token T_s.

The proof Π_{T_s} proves that: (i) the token T_s is of the form $e(h_\ell, \sigma_n)$, where h_ℓ is one of the n_ℓ valid values (i.e., $h_1 \ldots h_{n_\ell}$), for some σ_n and (ii) the n_ℓ is the same value embedded in the circuit token. The latter part ensures that σ_n is a valid BLS signature on the hash of some ID_c that the client knows.

The Tor client C then sends (T_s, Π_{T_s}) to X. We observe that C can re-use the stream token and the proof as long as it makes connections (to the same destination-port combination) using the same circuit within a ZXAD epoch. Note that the n_ℓ value at the circuit creation is used until the circuit expires.

On receiving (T_s, Π_{T_s}), the exit first checks it has not already seen T_s during the current (or the previous) epoch (e.g., by keeping a hash table of stream tokens seen in the current and the previous epochs at any point in time). This ensures that the client does not “double spend” a token. The exit then verifies the proof to check if T_s is well formed, and takes any remedial action.

4.2 Exit abuse detection

We now describe how ZXAD can be used to combat exit-level and Tor-level attacks (defined in Section 3.1). Recall that circuit-level attacks can be rate limited without the use of ZXAD.

Exit-level attacks. The exits do not even require the cooperation of the destination server to combat exit-level attacks. ZXAD stream tokens provide a mechanism for individual Tor exits to rate limit the number of unlinkable connections to any target destination; i.e., the number of different circuits containing streams to that destination. The exits can take any remedial action (plausibly decided by the maintainers of Tor) such as killing circuits that reuse tokens too often. We note that the exits can link circuits that reuse tokens to each other, but not back to a particular client.

Tor-level attacks. ZXAD stream tokens can further be forwarded by the exits to the destination servers to evade Tor-level attacks. As described in Section 3.4, the destinations can dynamically turn stream tokens on only when they are facing a large-volume attack from Tor (at large) or some Tor exit(s). The exits can then request clients to send a stream token, perform the token verification locally, and just forward hashes of well-formed stream tokens to avoid burden on the destination servers (as shown in Figure 1). This provides much more fine-grained control to the destination servers — using the stream tokens, the servers can distinguish when one client (IP address) is making too many connections to them over Tor, even using multiple exits, and throttle them in the same way as they would throttle a non-Tor client making too many connections.

We discuss how the exits can forward the stream tokens and how the end servers can request exits to dynamically turn stream tokens on or off in Section 9.

4.3 Extension to t-out-of-n DirAuths

Using Shamir’s secret-sharing scheme [50] (described in Section 2), ZXAD can be easily extended to Tor’s existing t-out-of-n threshold DirAuths threat model. This guarantees that ZXAD is secure as long as a majority (5 out of 9) of the DirAuths are honest.

However, Shamir’s secret-sharing scheme requires a central trusted dealer, which can securely generate and distribute secret shares to all DirAuths — Tor cannot afford such a high degree of trust in a single individual. Therefore, we use additive secret-sharing scheme [5] to first create a shared secret without a trusted dealer and then a share conversion scheme [20] to non-interactively create and update the Shamir secret shares.

Let the DirAuths be $A = \{ A_1, A_2, \ldots, A_n \}$. We consider subsets of A of size $n - (t - 1)$. Let $\mathcal{P}_j, 1 \leq j \leq \binom{n}{t-1}$ be such subsets and let s_j be a random secret in \mathbb{Z}_q for each \mathcal{P}_j. Then each $\mathcal{A}_i \in \mathcal{P}_j$, is given a copy of s_j by an arbitrary member of \mathcal{P}_j. Let $a = \sum_{j=1}^{\binom{n}{t-1}} s_j$ be the joint secret key. Note that any t DirAuths between them hold all $\binom{n}{t-1}$ of the s_j values, and so can compute a, but any smaller set is missing at least one of the s_j and so cannot compute a.

We now describe the share conversion procedure [20] to non-interactively convert the additive s_j shares of a into Shamir shares. For each \mathcal{P}_j, define the polynomial $g_j(x) = \prod_{i : A_i \in A \setminus \mathcal{P}_j} x - i$. Note that for each \mathcal{P}_j, of size $n - (t - 1)$, $g_j(x)$ is of degree $t - 1$, satisfies $g_j(i) = 0$ for each $A_i \in A \setminus \mathcal{P}_j$, and $g_j(0) = 1$. Now define $f(x) = \sum_{j=1}^{\binom{n}{t-1}} s_j \cdot g_j(x)$, which similarly is a degree $t - 1$ polynomial.

Each DirAuth A_i can compute $f(i)$ using their knowledge of s_j for each \mathcal{P}_j that contains A_i, but no other evaluation of f. Therefore, as $f(0) = \sum_{j=1}^{\binom{n}{t-1}} s_j \cdot g_j(0) = \sum_{j=1}^{\binom{n}{t-1}} s_j = a$, each $f(i)$ is indeed a t-out-of-n Shamir secret share of a.

Importantly, the DirAuths need not communicate at all when updating this Shamir secret sharing of a random value in a forward-secret manner. We now describe in detail the changes to the initialization, rekeying, key publishing, and periodic key generation phases. There are no changes in any of the other phases.
Initialization phase. Some DirAuth $A \in \mathcal{P}_i, 1 \leq j \leq \binom{n}{1}$ chooses $s_j \in \mathbb{Z}_q$ and sends it to all other DirAuths in the subset $\mathcal{P}_i \setminus A$. Additionally, A adds a commitment to the Tor consensus [33], which can be verified by all other DirAuths that received the share s_j. The commitment is the hash of (s_j, \mathcal{T}, n_w), where \mathcal{T} is the Tor shared randomness [35] and n_w is the ZXAD period number.

Once all DirAuths have thus received their additive shares of a, they can independently compute their own Shamir shares a_i of a as described above, and $(a_i, A_i = g_i^{a_i})$ will be used as their periodic key pair for the first ZXAD period. Finally, all DirAuths can publish their individual public keys A_i in the Tor consensus. The DirAuths follow a similar procedure to generate their long-term keypairs $(\rho_i, P_i = g_i^{\lambda_i})$. A small change is that the DirAuths omit the period number in the commitments. As mentioned in Section 3.3 the long-term key is usually never changed (like the long-term identity keys in Tor [25]).

- Long-term key generation phase. C follows a similar procedure (described in the periodic key generation phase below) to receive the blind signature σ_λ on its unique identifier. That is, C first chooses t of the DirAuths to contact, and performs the single-DirAuth long-term key generation phase protocol described in Section 4.1 with each of these t DirAuths, yielding t partial BLS signatures. C then combines these signatures to form σ_λ.

- Rekeying phase. Each DirAuth first increments n_w and uses a common Key Derivation Function (KDF) to independently convert each current share s_j to a new additive share $\hat{s}_j = kdf(s, t, n_w)$. The old s_j should be discarded for forward secrecy purposes. The DirAuths then proceed as above to independently compute their new $(a_i, A_i = g_i^{a_i})$ keypairs. Note that the rekeying phase is completely non-interactive.

- Key publishing phase. At the beginning of every ZXAD period, when the Tor DirAuths generate the first hourly consensus, they can compute and publish their individual public keys A_i that they will be using in the current and the next periods. At the beginning of every period, all exits and clients can update their view of the A_i values (for the current and the next period respectively) from the Tor consensus. Additionally, the clients compute the joint public key for the next period) $A = \prod_{i=1}^{t} A_i^{\lambda_i}$, where λ_i is the Lagrange coefficient for interpolating on the set $\{1, 2, \ldots, t\}$.

- Periodic key generation phase. To receive its blind signature, C specifies which keypair the DirAuths need to use (i.e., the current or the next period’s) and chooses t of the DirAuths to contact; say $\{A_i\}_{i \in V}$, where V is a subset of $\{1, \ldots, n\}$ of size t. C then performs the single-DirAuth periodic key generation phase protocol described in Section 4.1 with each of these t DirAuths, yielding t partial blind signatures $(s_i, i)_{i \in V}$ with the specified period’s secret key. C then combines these signatures to form $\sigma_\lambda = \prod_{i \in V} \sigma_i^{\lambda_i}$, where the λ_i are the Lagrange coefficients for interpolating over the set of indices V. Finally, C uses the specified period’s public key to verify if σ_λ is a valid signature by the DirAuths and unblinds it.

5 SECURITY

ZXAD is a zero-knowledge based protocol that helps Tor exits to detect large-volume traffic to a target server (by a single Tor client), without revealing any information about the client. It uses Tor’s existing threat model; i.e., the anonymity of a Tor client is compromised if a majority of the DirAuths are compromised.

The security of ZXAD relies on the security of (i) the blind signature transfer; (ii) the BLS signature used by the DirAuths to issue the long-term and periodic client keys; (iii) the DirAuths’ threshold key generation and non-interactive rekeying protocol (see Section 4.3); (iv) the zero-knowledge proof (ZKP) used to prove that the circuit token is well formed; and (v) the ZKP used to prove that the stream token is well formed.

The security of the (blind) BLS signature scheme [8] and the share conversion scheme [20] that we adapt for ZXAD imply the security for steps (i), (ii), and (iii) above. Therefore, we focus on the security of our ZKPs (i.e., (iv) and (v) above) from here on.

ZXAD uses two ZKPs as sub-protocols: (i) the Discrete Log Equality (DLE) and (ii) the Discrete Log Product Equality (DLEP). DLE is the standard Chaum-Pedersen proof of equality of discrete logs [19], while DLEP is a Generalized Schnorr Proof [13] of a discrete log product. For reference, we define these ZKPs and prove their security in Appendix B.

5.1 Circuit Token Zero-knowledge Proof

We now describe and prove correct a zero-knowledge proof that proves that token T_c is well formed.

To prove that σ_λ is a valid signature, we first randomize B by setting $B'' = B^\prime$. As B'' is uniform in \mathbb{G}_2, we reveal its value rather than proving knowledge of it. Next, we formulate the following proof statements (the secret witnesses are underlined for clarity).

$$\Pi_{T_c} = \mathcal{PK}\left(\left\{(t_c, ID_c) : \sigma_\lambda^{t_c} = e(A, B'')\right\}\right)$$

We observe that statement $\hat{\sigma}_{t_c}$ proves knowledge of a pre-image under H_2. This is hard to prove using a Σ-protocol. Therefore, we use a zkSNARK [6] instead.

With the zkSNARK proving knowledge of t_c and ID_c, statement $\hat{\sigma}_{t_c}$ then shows that $\sigma_\lambda^{t_c}$ can be unblinded to some σ_λ that is a valid BLS signature on $B = H_2(ID_c)$. Also, $\hat{\sigma}_{t_c}$ does not involve any secret terms and hence can be easily verified by the exit.

Recall (from Section 4.1) that the circuit tokens can be computed offline by choosing $R_z \stackrel{\$}{\leftarrow} \mathbb{Z}_q$. Further, we note that the private inputs to the zkSNARK are just the client’s identifier and r_z. Therefore, the client can compute the zkSNARK proofs also offline along with the circuit tokens. This way the clients’ most expensive step in ZXAD can be performed completely offline.

Let Π_{T_c}' be the zkSNARK proof. The client sends σ_{λ}'' and Π_{T_c}' (which contains g_t'' and B'') to the exit. The values g_t, g_c, A are public and known to both client and exit. The exit verifies the zkSNARK proof and statement $\hat{\sigma}_{t_c}$.

It is easy to check that our zero-knowledge proof is complete. We prove the soundness and the zero-knowledge property in Appendices C.1 and C.2 respectively.
5.2 Stream Token Proof Σ-Protocol

We now describe and prove correct a Σ-protocol that proves the stream token T_s is well formed. To prove that token T_s is well formed, we create a Σ-protocol that proves the statements in Section 4.1 (the secret witnesses are underlined for clarity). Note that $s_{r,1}$ shows that σ_A is the same value committed to as (g_1, g_2, σ_A, r) in the circuit token C_e.

\[
s_{r,1} : \begin{array}{c}
\frac{n_s}{i=1} & T_s = e(h_i, \sigma_A) \\
\end{array}
\]

\[
s_{r,2} : [g_1 = g_2] \land [\sigma_A = \sigma_{r,2}]
\]

We observe that statement $s_{r,1}$ is an OR-proof and hence the proof size grows linearly with n_s, and could potentially be expensive if the prover or verifier had to compute n_s pairings.

Therefore to prove $s_{r,1}$ (without n_s pairings), we choose $r_i \overset{\$}{\leftarrow} Z_q$ and compute public component $Y_i = Y_1 \cdot h_i$, where ℓ is the correct value of i in $s_{r,1}$, such that $T_s = e(h_i, \sigma_A)$. Additionally, to prove knowledge of r_i, we compute another public component $g_i' = g_i^{r_i}$. Now we rewrite the proof statements as follows (the secret witnesses are underlined for clarity):

\[
\Pi_{r,1} = PK\left((\xi, \rho, \eta) : \begin{array}{c}
\frac{n_s}{i=1} & DLE_{\rho} \left[g_1, g_1', Y_i, Y_i', h_i^{-1} \right] \\
\end{array}\right)
\]

\[
\xi_{r,2} : DLE_{\rho, \eta} \left[g_1, g_1', \sigma_A, r, e(Y_i, \sigma_A), T_s, e(Y_i', \sigma_A) \right]
\]

As already mentioned, we define the DLE and the DLEP ZKP s and prove their security in Appendix B.

We use the Chaum-Pedersen Σ-protocol to prove knowledge of r_i, a Borromean ring OR proof [41] to prove knowledge of ℓ, and our DLEP Σ-protocol to prove knowledge of r_i and that the token $T_s = e(h_i, \sigma_A)$ for some σ_A such that $\sigma_A = \sigma_{r,2}$.

C sends $(T_s, \Pi_{r,1})$ to the Tor exit, $g_1, g_2, Y_s, h_1, \ldots, h_n$ are public and are known (or can be computed) by both the client and the exit.

We summarize the complete Σ-protocol in Appendix D. It is easy to check that our ZKP is complete. We leave the soundness and the zero-knowledgeness proofs to Appendices D.1 and D.2 respectively.

6 IMPLEMENTATION

We built two proof-of-concept implementations for our zero-knowledge proofs: (i) in C++ using the libsnark [39] library (ii) in Go using the Kyber [22] cryptographic library.

We implemented the complete ZXAD protocol (to test its correctness) over the MNT curve [43] of embedding degree 4 using libsnark. However, libsnark does not have well-optimized implementations of group operations (see Section 7 for timing comparisons). Therefore, we also implemented a faster Go version using the Kyber [22] library (to evaluate the performance). Since the Kyber library does not support zkSNARKs or the MNT curves, we implemented all of our zero-knowledge proofs (except the zkSNARK) over the 256-bit Barreto-Naehrig curve [44] which offers about 96-bit security [46].

Our implementations of ZXAD are available for download at https://git-crysp.uwaterloo.ca/iang/zxad.

<table>
<thead>
<tr>
<th>(Library) / Operation</th>
<th>Offline Execution Time (ms)</th>
<th>Verifying Time (ms)</th>
<th>Size (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blind signature transfer (libsnark)</td>
<td>2.91 ± 0.08</td>
<td>2.60 ± 0.03</td>
<td>800</td>
</tr>
<tr>
<td>Circuit token generation (libsnark)</td>
<td>1.46 ± 0.06</td>
<td>2.62 ± 0.05</td>
<td>160</td>
</tr>
<tr>
<td>zkSNARK proof (libsnark)</td>
<td>3270 ± 20</td>
<td>8.4 ± 0.1</td>
<td>169</td>
</tr>
</tbody>
</table>

7 EVALUATION

To evaluate the performance of ZXAD, we first tested the end-to-end libsnark implementation for correctness. Next to evaluate the performance of ZXAD, we performed a series of micro-benchmarks on both the libsnark and the Kyber implementations. All experiments were run using a single thread (since Tor mainly uses a single thread [40]) on a 4.00 GHz i7-6700K desktop machine running Ubuntu 16.04.

Experimental setup. We evaluate ZXAD mainly by considering the load placed on the DirAuths (which verify the long-term key and issue the periodic key) and the exits (which verify the circuit and stream token proofs). To be practical, ZXAD should incur low overheads for both the DirAuths and the exits. We observe that the bulk of ZXAD’s overhead is the blind signature transfer and the zero-knowledge proofs. We therefore measure the load placed on the DirAuths and the exits in terms of the computation (i.e., the verifying times) and the communication costs (i.e., sizes) for these operations. Additionally, we also measure the load placed on the clients in terms of the execution times for these operations.

We measure (a) the execution and verification times and (b) the size for the blind signature transfer and the two ZXAD zero-knowledge proofs (i.e., the circuit and stream token proofs). We observe that the performance of our circuit token proof is independent of the destination visited (i.e., S) and the current connection count (i.e., ℓ) to that destination. However, the OR-proof (in the stream token proof) depends on n_s, the threshold number of unlinkable connections (circuits containing streams) to the destination S in a given epoch. Therefore, to explore how n_s affects the performance, we consider a Tor client that connects to a regular connection-throttling destination and vary n_s from 1 to 25 in our stream token proof experiments.

For the execution and verification times, we repeat each experiment 2500 times and report the mean over the 2500 iterations with their standard deviations (see Table 1). Note that the blind signature transfer, the circuit token, and the zkSNARK proof can be computed offline (see Sections 4.1 and 5.1) and therefore all the execution times reported in Table 1 are offline execution times.

For the size experiments, we run each experiment once and report the results in Table 1 (as the communication cost does not vary for every run).
Finally, for the stream token proof experiments we measure both proving and verifying times and the proof size 100 times for every value of n_{Σ} from 1 to 25 and plot the results in Figures 4 and 5. We use the results from the Kyber experiments for our analysis (unless otherwise explicitly stated) as they are significantly faster than the libsnark results.

Load on the DirAuths. Recall (from Section 4.1) that the DirAuths: (i) issue a long-term key to new Tor clients, (ii) verify before the blind signature transfer, and (iii) issue a periodic key to every Tor client. As mentioned before, to be practical ZXAD should incur low overheads for the DirAuths, which may have a large volume of clients connecting to them.

To evaluate the suitability of ZXAD for Tor, we derive our “ground truth” — the number of new clients connecting to Tor in a week — using data from the Tor Metrics Portal [55]. Tor reports ~ 2.1 million daily users [55] in June 2021. Assuming the worst (and unlikely) case that all daily users connecting to Tor in a week are new and unique (i.e., require both long-term and periodic keys), the DirAuths would get around $2.1 \times 7 \approx 14.7$ million long-term and periodic key requests in a week.

We now consider the computation overhead for the DirAuths while issuing the long-term and the periodic keys, each of which involves issuing a BLS signature. We find that a BLS signature computation takes 0.40 ± 0.02 ms. Next, we consider the computation overhead for the DirAuths while verifying the blind signature transfer. From Table 1, we observe that the verification time is 1.82 ms. Therefore the total overhead on the DirAuths is $2 \times 0.4 + 1.82 \approx 2.62$ ms. That is, the DirAuths can handle up to ~ 381 clients per second. Moreover, since the DirAuths are usually multiple-core machines, they can easily verify the proofs in parallel on the spare cores. Therefore for the default ZXAD period of one week, even with a single spare core, the DirAuths can verify up to $381 \times 3600 \times 24 \times 7 \approx 230.4$ million clients. In other words, the DirAuths can easily handle far more than the expected 14.7 million long-term and periodic key requests in a week. Note that the 2.62 ms overhead does not include the time taken to verify the client identifier using a Cinderella-style [23] verifiable computation protocol. Although the verification time would depend on the exact nature of the proof, certainly zkSNARK-style proofs will be more than accounted for in the gap between the 230.4 million clients that the DirAuths can handle and the much smaller userbase size.

Next we consider the communication overhead for the DirAuths. We find that the size of a BLS signature is 128 bytes. From Table 1, we observe that the blind signature transfer communication cost is 256 bytes. So, the overall computational overhead on the DirAuths is $2 \times 128 + 256 \approx 512$ bytes. Therefore, even for handling 230.4 million clients in a week (i.e., 381 clients per second), the DirAuths would just require a low bandwidth of $512 \times 381 \times 10^{-3} \approx 196$ KB/sec.

Load on the exits. Recall (from Section 4.1) that a Tor client generates: (i) the circuit token proof once per circuit (for the first connection-throttling destination) and (ii) the stream token proof once per circuit for every unique destination. As mentioned before, to be practical ZXAD should incur low overheads for the exits, which may have numerous circuits created through them. Note that we are interested in the number of circuits (and not streams) created per exit per epoch, as ZXAD rate-limits clients based on n_{Σ}, the maximum number of allowable unlinkable connections (or circuits containing streams) to the destination S every epoch. Hence to evaluate the suitability of ZXAD for Tor, here we derive our “ground truth” — the maximum number of circuits per exit per epoch — using empirical values modeled from the Tor network [38] and data from the Tor Metrics Portal [55]. Komlo et al. [38] report that on an average, 8.9 circuits are created every hour per client. Tor reports ~ 2.1 million daily users [55] in June 2021, so the total number of circuits created across Tor every hour is $8.9 \times 2 \times 100,000 \approx 18,690$ circuits. That is, in every ZXAD epoch $18,690,000/6 \approx 3,115,000$ circuits are being created across all exits. From the Tor Metrics Portal [55], the current maximum weighted exit has an exit weight equaling $\sim 0.6\%$ of the total available exit weight in Tor. Therefore, the maximum number of circuits created through a single Tor exit every ZXAD epoch is $0.006 \times 3,115,000 \approx 18,690$ circuits.

Since the Kyber library does not support zkSNARKs, we use the libsnark results just for the zkSNARK analysis. Though the zkSNARK proof is implemented over a different curve (i.e., the MNT4 curve), combining the results would give us an approximate measure of the overheads for verifying a circuit proof. This is because all zkSNARKs are fast to verify (just a few milliseconds) and result in very small proofs (less than 500 bytes).

We first focus on the overall computational overhead for the exits. First, we observe that the time taken for verifying the circuit token and the zkSNARK proof is 1.81 ms and 8.4 ms respectively. Therefore the exit takes a total of $1.81 + 8.4 = 10.21$ ms to verify the circuit token and the proof. Next, we focus on the computation overhead for verifying a stream token proof, which also involves computation of the n_{Σ}-value list (i.e., hashing to Q_1, n_{Σ} times). We find that for a reasonable value of $n_{\Sigma} = 10$, the hashing to Q_1 (which is a linear function of n_{Σ}) and the stream token proof verification take 0.55 ± 0.01 ms and 8 ms (from Figure 4) respectively. That is, overall the busiest exit takes $(10.21 + 0.55 + 8) \times 18,690 \approx 350,624$ ms or 5.8 minutes per epoch for verification. However, this 5.8 minutes overhead is only in the worst (and unlikely) case where every circuit through the busiest Tor exit contains a stream to a connection-throttling destination under an attack. Note that for subsequent streams connecting to new connection-throttling destinations (under attack) within the same circuit, the exit needs to verify only the

Figure 4: The mean of 100 runs of prove (left) and verify (right) times for our stream token proof Z-protocol as a function of n_{Σ}, the maximum number of unlinkable connections allowed to a destination S. The dashed lines represent the standard deviation.
stream token. This reduces the verification time to almost half for subsequent destinatios.

Moreover, we observe that the cryptographic verification of the circuit (and the stream) tokens is embarrassingly parallel, i.e., the most overloaded (or the high-bandwidth) exits can easily verify multiple tokens in parallel on a multi-core machine. Therefore, even an eight-core processor can reduce exit verification time further down to \(\sim 43.5 \text{s} \) per epoch even in the worst case.

We now consider the overall communication overhead for the exits. First, we observe that (from Table 1) the circuit token and the zkSNARK proof sizes are 128 and 169 bytes respectively. Next from Figure 5, we observe that, up to a reasonable value of \(n_S = 10 \), the stream token proof size is 928 bytes. Therefore, the overall communication cost incurred by the exits is 128 + 169 + 928 = 897 bytes per circuit. That is, for handling 18,690 circuits per epoch (in the worst case), the busiest exit would just require a low bandwidth of \((389 \times 18,690 \times 10^{-3})/(10 \times 60) = 12.1 \text{ KB/sec.}\)

Load on the clients. Recall (from Section 4.1) that a Tor client computes: (i) the computation for the blind signature transfer once every period; (ii) the circuit token proof once per circuit (for the first connection-throttling destination) and (iii) the stream token proof once per circuit for every unique destination.

As already mentioned (in Sections 4.1 and 5.1), (i) and (ii) above can be computed offline anytime after the client gets its long-term and periodic key respectively. Therefore, the client only creates the stream token proof online (which also involves computation of the \(n_g \)-value list). As already mentioned for a reasonable value of \(n_S = 10 \), the hashing to \(\mathbb{G}_1 \) takes \(0.55 \pm 0.01 \text{s} \). From Figure 4, we observe that the proving time for the stream token proof is 8 ms (for \(n_g = 10 \)). Therefore, the overall online overhead of the client is 8.55 ms. That is, the client would just experience a latency of 8.55 ms every time it accesses a new connection-throttling website (under attack) via the Tor Browser and a regular load time for all subsequent accesses in a given epoch. Therefore, the 8.55 ms overhead is negligible for the client.

8 RELATED WORK

Attacks stemming from Tor can be caused by malicious exits themselves or by benign exits that are being abused by malicious users.

Malicious exits. Prior research works [18, 42, 62] have found evidence of malicious behavior such as traffic snooping, SSL stripping, etc. by Tor exit relays. To mitigate these attacks, the Tor project actively scans for “bad” exit relays using tools like exitmap [61], sybilhunter [60], and torscanner [1]. Moreover, Tor users can also report suspicious activities performed by misconfigured or malicious exits [59]. Once a suspected activity is reported, it is reproduced and verified. Then, based on the severity of the attack, the exit is assigned one of the three flags — BadExit, Invalid, or Reject — so that clients will no longer select them as the last hop (or any hop).

Exit abuse. Tor currently does not have any built-in mechanisms to prevent benign exits being abused by malicious users. There has been a considerable line of research [9–11, 30, 32, 34, 57, 58] in anonymous blacklisting and revocation systems in the past. However, as Henry and Goldberg [29] mention most of these systems either offer weaker privacy guarantees, such as linkable pseudonymity, or leverage (semi-)trusted third parties to provide anonymity, or incur high computational overhead for service providers and users.

Differential treatment to Tor users. A recent study by Khattak et al. [37] showed that website operators have started providing second-class treatment to all Tor users, to mitigate the attacks stemming from Tor. Tor users now often face CAPTCHAs or even outright blocking. Their study showed that 3.67% of Alexa top 1000 sites were blocking Tor users and many publicly available Tor blacklists [3, 17] have evolved.

Singh et al. [51] characterized the nature of undesired traffic originating from Tor by considering e-mail contents sent to exits, blacklisting of Tor relays, and the server response to Tor traffic. They found that 7% of large commercial IP blacklists list exit IPs immediately after they were listed in the consensus. Moreover, they found that a majority of the attacks stemming from Tor were large-volume ones, such as DDoS, port scanning, etc. suggesting possibilities of privacy-preserving detection and mitigation.

Related cryptographic protocols. Camenisch et al. [14] propose a \(n \)-times anonymous authentication system that relies on a Public Key Infrastructure (PKI) trust setting. In their scheme, each user generates their own key pair and gets anonymously authenticated from a single credential issuer using CL signatures [12] (which are far slower than the BLS signatures [8] used in ZXAD). Our solution uses a completely different approach that yields a practical, efficient, and more suitable solution for the Tor network. In our approach, we use a distributed issuer with malicious minority setting (just like the DirAuths in Tor) so that the users can be individually authenticated by the issuers. We also provide a method to non-interactively generate and update (in a forward-secret manner) a joint secret key among the issuers (i.e., the DirAuths) and evaluate the suitability of ZXAD for Tor.

Existing solutions. Privacy Pass [21] is a zero-knowledge based solution to prevent users (of Tor mainly) from being victims of a disproportionate amount of internet challenges such as CAPTCHAs. It grants users 30 anonymous tokens for every CAPTCHA they solve; these tokens may be used later in an unlinkable manner to avoid future CAPTCHAs. However, a malicious user may still abuse an exit by making numerous connections to a single destination, using all the anonymous tokens that it obtains. In contrast, ZXAD limits the number of connections a client can make to any single destination in a ZXAD epoch. Like ZXAD, Privacy Pass also requires the co-operation of the end server or the end server’s hosting provider.
Opportunistic onions [49], introduced by Cloudflare, uses Tor’s onion service protocol to monitor and limit individual circuits — while a destination server views the same IP address (i.e., the Tor exit IP) for each individual Tor client connection or circuit, an onion service views a unique ephemeral circuit ID number. Opportunistic onions uses this ephemeral ID to rate limit the circuit. Malicious users may still repeat the onion service protocol and establish a fresh circuit, but doing so involves repeating the costly Tor rendezvous protocol.

9 DISCUSSION AND LIMITATIONS

In this section, we discuss practical aspects of deploying ZXAD, and some of its limitations.

Choice of \(n_S \) values. An important question for ZXAD is selecting an appropriate value for \(n_S \), the maximum number of allowableunlinkable connections (on different circuits) per client to a given destination \(S \), so that the abuse detection is not triggered in the normal course of browsing. We come up with some reasonable \(n_S \) values for different types of destinations based on how Tor operates: (i) unlimited for very popular destinations (such as Google ads, analytics, etc.) and Alexa top 1000 sites that are likely to appear in multiple tabs (recall each first-party tab gets its own circuit in Tor Browser); (ii) 10 or a moderate value for third-party services such as OAuth that one expects to see embedded in multiple first-party tabs; and (iii) 1 or 2 for other sites.

At the beginning of every day, the DirAuths can add the hash of destinations in category (i) and (ii) above to the Tor consensus, and all clients and exits can update their view of the \(n_S \) values. We suggest updating the \(n_S \) values once per day, since updating even the hash of 1000 or so destinations every hour can be quite tedious.

Sending stream tokens to destination servers. To combat Tor-level attacks as described in Section 4.2 (with the cooperation of the destination server), we suggest sending a hash of the ZXAD stream token along with the TCP connection from the exit to the server, perhaps by embedding it in a TCP option [56] or by having a separate application-level service for sending (and receiving) ZXAD stream tokens. The TCP option [56] solution is somewhat similar to Cloudflare’s [49] approach of encoding the circuit ID as an IPv6 address and using the Proxy Protocol header [52] for sending it to the destination server. The server would then check if it had seen the stream token hash before (from any exit), closing the connection if it had.

A similar approach can be used by the destination servers to dynamically turn tokens on or off (by encoding the operation as a single bit).

zkSNARK deployment. The deployment of the zkSNARK version requires a Common Reference String (CRS) to generate the initialization parameters. Precautions must be taken to destroy this initial secret, as otherwise anyone who has access to the secret can generate false proofs. We envision that the maintainers of the Tor Project can follow similar steps followed by other popular zkSNARK based systems such as Zcash [33], but the contributors can simply be the DirAuths, a majority of which are assumed to be honest already.

Denial-of-Service attacks. A malicious client can disrupt ZXAD (i.e., cause denial-of-service) by submitting malformed stream and circuit tokens or proofs. ZXAD is not immune to this type of DoS attack. However, the damage done can be minimized (for malformed stream tokens or proofs) by rate-limiting the number of streams per circuit at the exits. Malicious clients can still DoS ZXAD by submitting malformed circuit or stream tokens and proofs through different circuits. In this case, the exits can first verify the SNARK and the DLEP proofs (defined in Sections 5.1 and 5.2) which are significantly smaller in size, and reject all proofs that do not verify. Then for the remaining “almost-verifiable” responses, it can verify the complete circuit (or stream) token proof. We believe that the latter case will not be that common, since the client needs to spend \(\sim 9 \text{ ms} \) for \(n_S = 10 \) of online computation per stream token for generating such almost-verifiable proofs. This is, to some degree, similar to the opportunistic onions solution [49], wherein malicious clients creating a fresh circuit have to repeat the time-consuming “rendezvous protocol” over and over again.

Malicious clients can also try to disrupt ZXAD by submitting far too many long-term or periodic key requests to the DirAuths. The DirAuths can limit long-term key requests by dynamically requesting a client proof of work (e.g., a computational puzzle) [29]. Note that, since the long-term key request is performed infrequently, this does not affect honest clients much. The DirAuths can rate-limit periodic key requests (without even turning on proof of work) — honest clients that had obtained their periodic key in advance (in the previous ZXAD period) are not affected by this in any way. Other clients can still access destinations (not under attack) through Tor, as today, and resend a request for the periodic key later.

10 CONCLUSION

We present ZXAD, a system that can be used to rate limit high-volume traffic attacks (e.g., DoS attacks) at the Tor exits in a privacy-preserving way. ZXAD does not reveal any information other than the fact that some Tor client is making numerous connections to a target destination. Unlike existing work, ZXAD has wide applicability — rather than just relying on the high computational cost for performing a large-volume attack, ZXAD allows a threshold to be set (per destination server) for the number of per-client connections allowed through Tor in a given epoch and helps to detect Tor users that exceed this limit. We prove that ZXAD provides strong privacy guarantees as long as a majority of the DirAuths are honest.

Additionally, we propose a \(t \)-out-of-\(n \) threshold DirAuth key generation protocol for ZXAD, which allows DirAuths to rekey a Shamir-shared private key in a forward-secret manner without any communication between the DirAuths.

We demonstrate using proof-of-concept implementations that on an average ZXAD incurs \(\sim 8.55 \text{ ms} \) (on a single core) of client-side computation, 43.5 s (using eight cores) of exit-side computation per 10-minute epoch for the busiest exit in the worst case, and an exit-side bandwidth of at most 12.1 KB/sec, making it practical for Tor. We envision that ZXAD, if deployed in Tor, could reduce high-bandwidth exit abuse to a great extent and in turn improve overall exit reputation.

ACKNOWLEDGMENTS

This research was undertaken, in part, thanks to funding from the Canada Research Chairs program.
A UNIQUE IDENTIFIERS

In this section, we list some unique identifiers that a client could use in ZXAD:

(1) IP address

Advantages. Many previous related research works [30, 32, 34, 57, 58], as well as common deployed network services, limit clients based on their IP address.

Disadvantages. (i) IP address is neither permanent nor unique [29] (e.g., mobile clients with dynamic IP addresses, clients behind a Network Address Translation (NAT), etc.). (ii) In order to prove possession of an IP address, the Tor client must make a direct connection using that IP address. This can potentially deanonymize the Tor client if this connection can be linked to the sites it visits over Tor. Therefore, we propose an IP-based credential issuing service from which the client can obtain an IP-based credential and prove possession of the same (in zero-knowledge) to ZXAD entities. The client uses this credential as its verifiable identifier (or long-term key) in the ZXAD protocol. However, since the IP address can change over time, this credential must be refreshed based on the expected lifetime of the identifier (e.g., monthly). In other words, every month the credential issuer regenerates fresh signing key(s) and all clients obtain a new credential. In this case, the Sybil attacks are limited to how many identifiers the attacker can control in a month (i.e., a single long-term key lifetime).

We envision that the IP-based credential issuing service could be useful for (anonymously) proving possession of an IP to a variety of services through any anonymizing network and eventually many more people could be using this service.

Of course, this list is not exhaustive. Coming up with a comprehensive list of possible unique client identifiers is beyond the scope of this paper. Our goal is to rather provide a secure and private rate-limiting solution for high-volume traffic abuse through Tor, that is sufficiently general to be adapted for any type of unique client identifier (even ones with low entropy, such as an IP address).

B STANDARD ZKPS USED BY ZXAD

We now detail the DLE and DLEP zero-knowledge sub-protocols used by ZXAD.

B.1 ZKP for Knowledge of Equality of Discrete Logs

Let \(G \) be a cyclic multiplicative group of prime order \(q \) and \(g \) be one of its generators. Given a tuple of group elements \((A, A', B, B')\), a prover \(\mathcal{P} \) wants to prove the existence of some \(r \) such that \(A' = A^r \) and \(B' = B^r \). Chaum and Pedersen [19] describe a \(\Sigma \)-protocol to prove the knowledge of \(r \), which can be made non-interactive using the Fiat-Shamir heuristic [26] as follows, denoted \(\text{DLE}_r[A, A', B, B'] \):

1. \(\mathcal{P} \) selects \(t \leftarrow \mathbb{Z}_q \) and sets \(T_1 = A^t, T_2 = B^t \).
2. \(\mathcal{P} \) computes the Fiat-Shamir hash:
 \[c = H(g, T_1, T_2, A, A', B, B') \in \mathbb{Z}_q \]
3. \(\mathcal{P} \) computes \(v = t - r \cdot c \) and sends \(c, v \) to the verifier \(\mathcal{V} \).
4. \(\mathcal{V} \) computes \(T'_1 = A^v \cdot A'^c, T'_2 = B^v \cdot B'^c \), and accepts the proof iff \(c = \frac{1}{2} H(g, T'_1, T'_2, A, A', B, B') \).

We leave off the completeness, soundness, and zero-knowledgeness proof of this \(\Sigma \)-protocol as it is standard.

B.2 ZKP for Knowledge of Equality of Discrete Logs Product

Let \(\mathbb{G} = (g_1, g_2, g_3, e, g_q, H_1, H_2) \) be the output of an asymmetric bilinear group generator. Given \(A, A' \in \mathbb{G}_1, B, B' \in \mathbb{G}_2, \) and \(C, D, E \in \mathbb{G}_1 \), a prover \(\mathcal{P} \) wants to prove the existence of
some \(r_1, r_2 \) such that \(A' = A^r_1, B'' = B^r_2 \), and \(E = C^{r_1} \cdot D^{r_2} \).

We now describe a non-interactive \(\Sigma \)-protocol to prove the knowledge of \(r_1, r_2 \) using the Fiat-Shamir heuristic [26], denoted \(\text{DLEP}_{r_1, r_2}[A', B', B'', C, D, E] \):

i) \(\mathcal{P} \) selects \(t_1, t_2 \leftarrow \mathbb{Z}_q \) and sets \(T_1 = A^t_1, T_2 = B^{t_2} \), and \(T_3 = C^{t_1} \cdot D^{t_2} \).

ii) \(\mathcal{P} \) computes the Fiat-Shamir hash:
\[
c = H(g_1, g_2, t_1, T_1, T_2, T_3, A', B', B'', C, D, E) \in \mathbb{Z}_q.
\]

iii) \(\mathcal{P} \) computes \(v_1 = t_1 - r_1 \cdot c \) and \(v_2 = t_2 - r_2 \cdot c \) and sends \(c, v_1, v_2 \) to the verifier \(\mathcal{V} \).

iv) \(\mathcal{V} \) computes \(T'_1 = A^{v_1} \cdot A'^c, T'_2 = B^{v_2} \cdot B'^c, \) and \(T'_3 = C^{v_1} \cdot D^{v_2} \cdot E' \) and accepts the proof if \(c \equiv H(g_1, g_2, T'_1, T'_2, T'_3, A, A', B, B'', C, D, E) \mod q \).

Completeness. \(\mathcal{P} \) chooses \(r_1, r_2, t_1, \) and \(t_2 \) such that it can properly compute \(v_1 \) and \(v_2 \). Clearly, the \(\Sigma \)-protocol is complete.

Special Soundness. Suppose \(\mathcal{P} \) provides two proofs with the same commitment values \(t_1 \) and \(t_2 \) with challenges \(c_1 \) and \(c_2 \) respectively. Then we get:
\[
\begin{align*}
v_1 &= t_1 - r_1 \cdot c_1, & v'_1 &= t_1 - r_1' \cdot c_1 \\
v_2 &= t_2 - r_2 \cdot c_2, & v'_2 &= t_2 - r_2' \cdot c_2.
\end{align*}
\]
We observe that \(r_1 = \frac{v_1 - v'_1}{c_1 - c'_1} \) and \(r_2 = \frac{v_2 - v'_2}{c_2 - c'_2} \). Therefore, special soundness is satisfied.

Honest Verifier Zero Knowledge. We define an honest verifier zero-knowledge simulator that is given the challenge \(c \).

The simulator chooses \(v_1, v_2 \leftarrow \mathbb{Z}_q \) and sets:
\[
\begin{align*}
T'_1 &= A^{v_1} \cdot A'^c, & T'_2 &= B^{v_2} \cdot B'^c, \\T'_3 &= C^{v_1} \cdot D^{v_2} \cdot E'
\end{align*}
\]

As we can see, the verification equation holds for the simulation and the verifier \(\mathcal{V} \) accepts the proof.

C CIRCUIT TOKEN ZERO-KNOWLEDGE PROOF

We now prove the soundness and zero-knowledge of our circuit token zero-knowledge proof defined in Section 5.1.

C.1 Soundness

First, we prove that our circuit token zero-knowledge proof is sound:

- Statement \(\tilde{s}_{r_1} \) (i.e., the zkSNARK proof \(\Pi_{r_1} \)) proves that the client knows some \(r_1 \) and a pre-image \(ID_c \) under \(H_2 \), such that:
\[
\begin{align*}
g'' &= g^{r_1} \\
B'' &= H_2(ID_c)\cdot y^{r_1} \tag{1}
\end{align*}
\]

- Since the client knows \(r_1 \) and \(\sigma'' \) is public, the client knows some \(\sigma_A \) such that:
\[
\sigma' = \sigma'' \tag{2}
\]

- Now substituting Equation 1 and Equation 2 in Statement \(\tilde{s}_{r_1} \), we get:
\[
e(g_1, \sigma_A) = e(A, B) \tag{3}
\]

Then we can conclude that: (i) the prover can unblind \(\sigma'' \) to \(\sigma_A \), which is a valid signature on some \(B \) by the Dir-Auth \(\mathcal{A} \) (with the secret key corresponding to the public key \(A \)) and (ii) \(B \) is the hash of some \(ID_c \) that the client knows.

C.2 Zero-knowledgeness

Informally, zero-knowledgeness guarantees that a valid proof \(\Pi_{r_1} \) does not reveal anything about the witnesses; i.e., \(r_1, \) or \(ID_c \).

This is formalized by constructing a simulator that outputs the public values in the same distribution as the honest prover, without knowing the witnesses. We then show that an adversary that distinguishes this simulation from a real proof with non-negligible probability, can be turned into an adversary that breaks an instance of the DDH problem in \(\mathbb{G}_2 \).

We now prove the zero-knowledgeness of our zero-knowledge proof by defining an honest verifier zero-knowledge simulator. We allow the simulator to have access to a single BLS signature \((K, K'' = K')\) from the DirAuths for arbitrary \(K \in \mathbb{G}_2 \) (not of the simulator’s choosing). Note that the simulator does not learn \(a \), nor is the simulated proof claiming to know \(a \).

To output the responses, our simulator first chooses \(b, r_2 \leftarrow \mathbb{Z}_q \) and sets \(g'' = g^{r_2}, B'' = K^{b \cdot r_2} \), and \(\sigma_A'' = K^{b \cdot r_2} \). Next, our simulator runs the simulator for the zkSNARK proof on inputs \(g'' \) and \(B'' \) to obtain the public outputs. Finally, our simulator also runs a hash oracle for \(H_2 \) which outputs \(K^b \) for \(ID_c \) and random \(r \leftarrow \mathbb{Z}_q \) for all other inputs.

The simulator then sends the token \(\sigma'' \), the simulated zkSNARK proof \(\Pi'' \), and our simulated proof \(\Pi_{r_1} \) to the verifier. As we can see, the verification equation \(e(g_1, \sigma_A'' \cdot e(A, B'') \cdot e(T, r) = e(T, r) \) holds for the simulation and the exit (i.e., the verifier) accepts the proof. An adversary that distinguishes this simulation from a real proof can be turned into an adversary that given a \(B \) can solve an instance of the DDH problem in \(\mathbb{G}_2 \).

D STREAM TOKEN \(\Sigma \)-PROTOCOL

We now summarize the complete \(\Sigma \)-protocol to prove statements \(s_{r_1} \) and \(s_{r_2} \) (defined in Section 5.2) in Figure 6. We leave off the verification as it is the standard Schnorr-type proof verification (defined in Section 2.2) and is straightforward.

D.1 Soundness

Informally, soundness guarantees that only clients with a well-formed token \(T_c \) can generate a valid proof \(\Pi_{r_1} \), that will be accepted by the verifier (i.e, the Tor exit). We now prove that our \(\Sigma \)-protocol is sound:

- Statement \(s_{r_1} \) proves that the client knows some \(r_1, \ell \leq \ell \leq n_\alpha, \) such that \(g_{\ell} = g_{\ell}^r \) and \(Y_{\ell} = Y_{\ell}^r \cdot h_{\ell} \).
Figure 6: Σ-protocol to prove that the stream token T_s is well formed

- Statement $s_{\Pi_{r_s}}$ proves that the client knows some r_s such that $g_s'' = g_r''$, and
- $e(Y_s', \sigma''_s) = e(Y_1, \sigma''_s) Y_s^t \cdot T_s$
- Finally, from Equations 1 and Equation 3 we get:

$$\sigma_s = B^a$$

(6)

Therefore, from Equations 4–6 we can conclude that T_s is well formed.

D.2 Zero-knowledgeness

Informally, Zero-knowledgeness guarantees that a valid proof Π_{r_s} does not reveal anything about the witnesses; ℓ, r_1, r_2.

This is formalized by constructing a simulator that outputs the public values in the same distribution as the honest prover, without knowing the witnesses. We then show that an adversary that distinguishes this simulation from a real proof with non-negligible probability, can be turned into an adversary that breaks an instance of the DDH problem in \mathcal{G}_1.

We now prove the zero-knowledgeness of our Σ-protocol. We first define an honest verifier zero-knowledge simulator that is given the challenge c_i for the Schnorr-type proof (defined in Section 2.2).

To output the responses, our simulator runs the simulator for the Borromean ring OR-proof on $\prod_{i=1}^{n_s} DLE[g_i, g_i', Y_i, h_i^{-1}]$ with the given challenge c_i and obtains the responses $V_{r_{1a}}, \ldots, V_{r_{n_s}}$. It uses the Σ-protocols for the Borromean ring OR-proof [41] and the Chaum and Pedersen [19] proof for knowledge of equality of discrete logs. We omit the zero-knowledgeness proofs for these Σ-protocols as they are standard.

For statement $s_{\Pi_{r_s}}$, our simulator runs the simulator for DLEL $[g_i, g_i', g_i'', e(Y_1, \sigma''_s), T_s, e(Y_1', \sigma''_s)]$ with the challenge c_i and obtains the responses $V_{r_{1b}}, V_{r_{2b}}$. The zero-knowledgeness of DLEL is proved in Appendix B.2.

The simulator then sends the token T_s and the simulated proof Π_{r_s} to the verifier. An adversary that distinguishes this simulation from a real proof can be turned into an adversary that given a $h_i, 1 \leq \ell \leq n_s$ can solve an instance of the DDH(g_i,g_i',Y_1,h_i) in \mathcal{G}_1.

StreamTokenProof($g_i, g_i', Y_1, \ell, n_s, h_1, \ldots, h_{n_s}, \sigma_s, \sigma''_s, g_i', g_i'', Y_i$)

1) C first chooses $\tilde{r}_1, \tilde{r}_2, \tilde{r}_i \leftarrow \mathbb{Z}_q$.

2) C then computes the commitments by substituting the random values (chosen in step 1) for the secret terms in statement $\tilde{s}_{\Pi_{r_s}}$:

$$T_i = g_i$, $T_i = g_i'$, $T_i = e(Y_1, \sigma''_s) Y_i$ $e(h_i, \sigma''_s)$

3) Next, to prove statement $\tilde{s}_{\Pi_{r_s}}$ C computes the Borromean [41] OR-proof starting from index ℓ:

- C first sets the commitments for the ℓ^{th} index: $T_{\ell,0} = g_i$, $T_{\ell,0} = Y_i$
- C then computes the Fiat-Shamir hash for index ℓ as follows:

i) If $\ell \neq 1$, $c_\ell = H(g_i, g_i', Y_1, Y_1', h_1, T_{\ell,0}, T_{\ell,t})$ else, $c_\ell = H(g_i, g_i', Y_1, h_1, T_{\ell,0}, T_{\ell,t})$

ii) $T_{\ell,0} = g_i Y_1^{-1} \cdot t_{\ell,0}^{-1}$ $T_{\ell,0} = Y_i$ $t_{\ell,t}$ $T_{\ell,t}$ $T_{\ell,t} = Y_i T_{\ell,t} Y_i' Y_i''$ $T_{\ell,t}$ $T_{\ell,t} = Y_i T_{\ell,t} Y_i''$ $T_{\ell,t}$ $T_{\ell,t} = Y_i T_{\ell,t} Y_i''$

- Finally, C sets the response for the ℓ^{th} index: $V_{\ell,t} = \tilde{r}_i - \tilde{r}_t - c_\ell$

4) Finally, C computes the response values for all other secret terms using the Fiat-Shamir hash c_i produced above:

$$V_{r_{1b}} = \tilde{r}_1 - r_1 \cdot c_1$$

$$V_{r_{2b}} = \tilde{r}_2 - r_2 \cdot c_2$$

5) C sends the token T_s and the proof $\Pi_{r_s} = (g_i', Y_i', V_{r_{1a}}, \ldots, V_{r_{n_s}}, V_{r_{1b}}, V_{r_{2b}})$ to the Tor exit.