
TEEMS: A Trusted Execution Environment based
Metadata-protected Messaging System

Sajin Sasy

CISPA Helmholtz Center for

Information Security

Saarbrücken, Saarland, Germany

sasy@cispa.de

Aaron Johnson

U.S. Naval Research Laboratory

Washington, D.C., U.S.A.

aaron.m.johnson213.civ@us.navy.mil

Ian Goldberg

University of Waterloo

Waterloo, ON, Canada

iang@uwaterloo.ca

Abstract

Ensuring privacy of online messaging remains a challenge. While

the contents or data of online communications are often protected

by end-to-end encryption, themetadata of communications are not.

Metadata such as who is communicating with whom, how much,

and how often, are leaked by popular messaging systems today.

In the last four decades we have witnessed a rich literature

of designs towards metadata-protecting communications systems

(MPCS). While recent MPCS works often target metadata-protected

messaging systems, no existing construction simultaneously attains

four desirable properties for messaging systems, namely (i) low la-

tency, (ii) high throughput, (iii) horizontal scalability, and (iv) asyn-

chronicity. Existing designs often capture disjoint subsets of these

properties. For example, PIR-based approaches achieve low latency

and asynchronicity but have low throughput and lack horizontal

scalability, mixnet-based approaches achieve high throughput and

horizontal scalability but lack asynchronicity, and approaches based

on trusted execution environments (TEEs) achieve high throughput

and asynchronicity but lack horizontal scalability.

In this work, we present TEEMS, the first MPCS designed for

metadata-protected messaging that simultaneously achieves all

four desirable properties. Our distributed TEE-based system uses

an oblivious mailbox design to provide metadata-protected messag-

ing. TEEMS presents novel oblivious routing protocols that adapt

prior work on oblivious distributed sorting. Moreover, we introduce

the notion of ID and token channels to circumvent shortcomings

of prior designs. We empirically demonstrate TEEMS’ ability to

support 2
20

clients engaged in metadata-protected conversations in

under 1 s, with 205 cores, achieving an 18× improvement over prior

work for latency and throughput, while supporting significantly

better scalability and asynchronicity properties.

Keywords

anonymous communications, metadata-protecting communication

systems, oblivious algorithms

1 Introduction

In light of widespread digital surveillance [28], the Internet has

adopted end-to-end encryption (E2EE) as a standard for all forms of

online communications. Today, popular messengers like Signal or

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies YYYY(X), 1–20
© YYYY Copyright held by the owner/author(s).

https://doi.org/XXXXXXX.XXXXXXX

WhatsApp that are used by millions to billions of individuals, pro-

vide E2EE for all users’ conversations by default. However, while

E2EE protects the contents of communications, it offers no protec-

tions over the metadata of communications: metadata such as who

is communicating with whom, when, and how much.

Metadata can have dire consequences [60]. The lack of metadata

protections for our online communications curbs whistleblowing.

Free and democratic societies depend on whistleblowers shedding

light on corruption and misdeeds of their governments or employ-

ers, but whistleblowers are often rewarded with disheartening out-

comes [10, 31, 59]. The same is true of individuals in oppressive

regimes, whose lives are endangered by their mere sexual orienta-

tion or political stance [24, 64].

Research in this direction dates back decades [13, 14, 20, 53, 56,

61, 63, 65], and has received significant attention in the last several

years alone [1, 15, 19, 21, 27, 40–42, 44, 51, 52, 73, 74, 77]. Yet a

practical metadata-protecting communication system (MPCS) that

protects against strong (global) adversaries still seems far from

reality; systems like Tor [25] defend only against local network

adversaries, and so cannot provide the protection we seek. A recent

systematization of knowledge [66] provides a comprehensive view

of the literature so far. One of their key observations is that none of

the existing designs towards MPCS achieve three fundamental prop-

erties expected from a messaging system simultaneously, namely,

(i) low latency, (ii) horizontal scalability, and (iii) asynchronicity.
Additionally, any messaging system should be able to support a

high message throughput; that is, it should be able to provide its

low latency to a large number of messages simultaneously. In this

work, we remedy the state of affairs by presenting a novel MPCS

design TEEMS (Trusted Execution Environment based Metadata-

protected Messaging System) with the objective of attaining these

four fundamental properties together.

As suggested by its name, TEEMS leverages Trusted Execution

Environments (TEEs) to achieve metadata-protected messaging.

Existing MPCS designs predominantly reside in the distributed-

trust model under non-collusion assumptions of servers; shifting

the threat model to a TEE-based one has two immediate upshots

that lead to our efficient system. First, all the TEE-supported servers

can be run by a single service provider in one data center, resulting

in low-latency and high-bandwidth links between servers of the

system, while protecting metadata from even this service provider.

Second, such a system does not face the deployment challenge of

finding many cooperating but non-colluding entities. The challenge

however with the TEE setting is to be secure against malicious

service providers that may try to infer conversational metadata

by exploiting TEE side channels. Hence, TEEMS focuses on the

1

https://orcid.org/0000-0003-3447-1006
https://orcid.org/0000-0002-2057-1690
https://orcid.org/0000-0002-1176-2882
https://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXX.XXXXXXX

Proceedings on Privacy Enhancing Technologies YYYY(X) Sajin Sasy, Aaron Johnson, and Ian Goldberg

design of new oblivious protocols that compose together into a

novel metadata-protected messaging system.

In the literature, two distinct classes of MPCS systems that hold

promise are mixnet systems [37, 44, 73] and Reverse PIR (RPIR)

systems [27, 74]. However, they have contrasting merits and short-

comings. Mixnet systems enable high throughput and horizontal

scalability but lack support for asynchrony and incur higher latency

overheads than the RPIR systems. On the other hand, RPIR-based

mailbox systems provide asynchrony and low latency for message

delivery, but they have poor horizontal scalability and throughput.

Another design approach, demonstrated in the Sparta system [29]

uses TEEs to obliviously store and fetchmessages. Sparta has several

variants, but none is horizontally scalable, and none simultaneously

provides low latency and high throughput. Sparta has several other

security and performance deficiencies, as well (see Appendix A).

Our key observation is that mailbox-based MPCS can be horizon-

tally scaled with distributed oblivious routing protocols. TEEMS,

hence, uses a fully distributed oblivious mailbox architecture in

which clients drop off messages, the system obliviously routes

and stores them, and then clients pick up their waiting messages.

Asynchrony in our design is facilitated by our novel oblivious route-
and-pad protocols, TokenColumnRoute and IDColumnRoute. We

note that while we construct such protocols using TEEs, our ar-

chitecture and protocols could also be instantiated (less efficiently)

through multi-party computation or homomorphic encryption.

While TEEMS supports asynchrony, internally the system op-

erates in epochs. In each epoch, our protocols route messages to

their correct destinations while simultaneously injecting padding

messages such that each user in the system receives the same (tun-

able system parameter) number of messages at the end of each

epoch. We present oblivious designs for our protocols such that

even an adversary that controls the servers’ operating systems, and

observes all the communications among the servers and between

servers and clients, cannot infer any information other than the set

of users that interacted with the system in a given epoch.

Our contributions are:

1.We present the oblivious mailbox system TEEMS, which is the

first MPCS to simultaneously achieve low latency, high throughput,

horizontal scalability, and asynchronicity.

2. Our design introduces the notion of ID and token channels,
and we present fully oblivious route-and-pad protocols for each. A

token channel provides guaranteed delivery for messages from a

limited number of “friends”, while the ID channel has no limit on

the number of potential senders but does not guarantee delivery.

We further show how to bootstrap the token channel from the ID

channel. This approach circumvents the rigid dialing protocols in

the literature and lets users have multiple parallel conversations.

3.We implement a prototype of our design and provide bench-

marks to demonstrate practicality.

2 Background

2.1 Trusted Execution Environments

Beginning with Intel TXT [33], TEEs have received significant aca-

demic and industry attention. TEEs enable execution of arbitrary

programs on a remote adversarial server while ensuring confiden-

tiality over the state and data of such programs, and integrity of the

program being executed. Today, all major hardware manufacturers

support different flavours of such TEEs, for instance Intel’s SGX [3]

and AMD’s SEV [38].

Unfortunately, this grandiose promise of TEEs has some pitfalls

in practice. Side-channel attacks plague even the most recent itera-

tion of such TEEs. Broadly, there are two classes of side channels. Mi-

croarchitectural side channels such as speculative execution [16, 75]

or voltage-scaling [50, 55] ones; these violate the TEE (and in-

deed the CPU) threat model, and consequently receive patches

from hardware manufacturers [34–36]. Software side-channels like

those based on memory access patterns [12, 47, 71, 76] and con-

trol flow [48, 54, 78] remain out of scope of the TEE threat model,

and so are left to the authors of the programs meant to run inside

the TEEs to ameliorate themselves. Consequently, leveraging TEEs

while ensuring security and confidentiality of data requires the use

of “fully oblivious” algorithms [58, 67]. Fully oblivious algorithms

have control flow and memory access patterns independent of the

private data they compute upon, and hence do not induce software

side channels. TEEs can facilitate efficient privacy-preserving solu-

tions (despite the overheads of running fully oblivious counterparts

of the underlying programs) and have consequently earned several

real-world deployments [11, 72, 79].

2.2 MPCS

Several MPCS have been proposed in the literature with varying

degrees of privacy and functionality. In this work, we use termi-

nology presented by a recent taxonomy of existing MPCS [66] to

make precise the privacy and functionality goals of our system. Our

work presents a novel design for a Communication Unobservable

System (CUS). A CUS protects even the existence of a message from

a global adversary. While the number of online users is observable,

whether they are even communicating or not is protected from

such an adversary. Moreover, the receiver anonymity set for any

message in TEEMS is the set of all users in the system whether or
not they are currently online.

In Section 1we listed the fundamental desirable properties. In Ap-

pendix B we expound on these properties and an often overlooked

aspect of MPCS: the setup involved in bootstrapping metadata-

protected communications.

Among the existing MPCS designs, Karaoke [44], Groove [8],

Boomerang [37], Sabre [74], and Sparta [29] are the closest to our

work.Karaoke is a recent CUS from the line of MPCS constructions

based on mixnets and differential privacy [73, 77]. In Karaoke all

clients send and receive exactly one message in a round. Servers

in Karaoke are distributed into input and output mixnet chains.

Users engaged in a conversation establish a dead-drop address

via a separate “dialing” protocol. The dead-drop address space is

distributed evenly across all the output chains. Conversing users

submit their messages destined for the same output chain, through

any input chain. Each server mixes all messages before forwarding

them to the next server on the chain. The last server in an output

chain swaps messages that have the same dead-drop address, and

then all messages are sent back in the reverse direction. Each server

in the system also inserts noise messages to provide differential

privacy guarantees on all the user observable variables of the system

(such as the number of messages going from an input chain to an

2

TEEMS: A Trusted Execution Environment based Metadata-protected Messaging System Proceedings on Privacy Enhancing Technologies YYYY(X)

output chain). While Karaoke’s design supports high throughput

and horizontal scalability, it does not support asynchronous clients

nor low latency (see Appendix B).

Groove extends such differentially private MPCS with parallel

conversations and partial support for asynchrony. In Groove clients

perform an expensive circuit setup phase for an epoch (one day)

in exchange for faster communication rounds. Setting up multiple

circuits facilitates parallel conversations, however Groove requires

that conversing clients already have a shared secret. Additionally,

the setup phase fixes the clients’ correspondents for the epoch.

This assumption and model effectively allows Groove to side-step

dialing protocols. Nonetheless adding new friends to setup circuits

with still requires a dialing protocol to bootstrap a shared secret.

Moreover, Groove only allows for partial asynchrony. It enables

users to receive messages for a fixed number of future rounds of

communications when they go offline. Clients precompute circuits

for all the epochs they would be offline and provide their untrusted

service provider with the circuit creation bundles. TEEMS on the

other hand can enable clients to receive messages for however long
they may go offline without any additional client compute overheads.
We do have a limitation on the maximum number of real messages

such users receive when offline, but this is tunable and can be

handled independent of the actual communication protocol itself

(see Section 4.7).

Boomerang leverages TEEs to present a system that has se-

curity under hardware trust without having to use differentially

private guarantees the way Karaoke and its predecessors do. Each

input and output mixnet chain is replaced by a single TEE-aided

server that obliviously shuffles all the messages together without

leaking any metadata information to the adversarial host via side

channels. The output servers also run an oblivious algorithm to

perform the matching and swapping of messages destined for the

same dead-drop. In Boomerang the number of packets that each

input node distributes to the output nodes is fixed by an upper

bound that ensures minimal padding overheads while introducing

an overflow failure probability. Boomerang hence does not require

the differential privacy used by Karaoke and its predecessors, in ex-

change for trusted hardware and oblivious algorithms. Nonetheless,

it still cannot support asynchronous clients nor low latency.

Sabre is the current state-of-the-art iteration of a Sender Unlink-

able Messaging System (SUMS) [66] from the Reverse PIR family

of MPCS [19, 27]. In a SUMS, all users have a dedicated mailbox. In

Sabre, mailboxes are distributed over two non-colluding servers that

facilitate a disruption-resistant and write-private database. Senders

drop their message into their intended receiver’s mailbox using PIR

in reverse (private writing instead of private reading), preventing an

adversary from linking messages with their destination mailboxes.

Clients periodically retrieve messages directly from their mailbox,

without having to hide which mailbox belongs to them. Sabre (and

its predecessors) provide asynchrony and low latency, but cannot

support horizontal scalability or high throughput.

Sparta [29] is a Receiver Unlinkable Messaging System (RUMS)

based on TEEs. Sparta provides three designs: Sparta-LL is low

latency, Sparta-SB is sorting-based for high throughput, and Sparta-

D is distributed for more scalability. Running on a single server,

Sparta-LL maintains each user’s mailbox as a linked list in a sin-

gle ORAM, while Sparta-SB uses a single sorted message vector

for all mailboxes. Sparta-D assigns messages pseudorandomly to

several sorted sub-vectors, which can be on different servers, and a

coordinating server reads and writes messages to and from those

sub-vectors in padded batches. Like TEEMS, Sparta is an oblivious

mailbox design and thus provides asynchronous communication.

However, all its designs fail to provide scalability, as even Sparta-D

features a single server that processes all user queries and responses.

In comparison, TEEMS simultaneously achieves all four desirable

MPCS properties. To do so, it includes several technical innovations

over these prior systems. First, it introduces the notions of token

and ID channels, where the token channel guarantees delivery to a

limited number of user-designated friends, while only the ID of the

recipient is needed to send on the ID channel, but delivery is not

guaranteed. The ID channel in particular provides functionality not

existing in prior work, enabling a user to receive messages without

prior coordination beyond sharing their ID (a static string). Second,

it allows users to manage friends using the ID channel, thereby

boostrapping the token channel and avoiding the cumbersome

dialing protocols of prior systems. Third, TEEMS includes novel

oblivious algorithms to route messages from a set of servers that

receive messages to a set that stores mailboxes, which provides the

horizontal scalability that several prior works lack.

3 Overview

We introduce the components and parameters of TEEMS. The pa-

rameters and other notation are summarized in Appendix C.

3.1 System Design and Goals

TEEMS uses an oblivious mailbox MPCS design. That is, senders

submit messages, which the system stores and then delivers to

receivers while remaining oblivious to which users are communi-

cating. Each user has a mailbox that will store messages until the

user connects and retrieves them. TEEMS does not hide which mail-

box belongs to which user, but it does hide if the mailbox receives or

contains messages at all, as well as hiding the senders of any such

messages. The system operates in synchronous epochs. However,
the system provides asynchronous communication to users. Users

may, at any time, retrieve their mailbox and submit messages to be

stored in the receiver’s mailbox by the next epoch.

TEEMS uses TEEs in its servers for metadata protection. The

main process in each server runs in a TEE enclave, with any nec-

essary calls outside the enclave (e.g., to send or receive messages)

operating only on non-secret or encrypted data. Remote attestation

to the server enclave processes is performed by other servers and

clients, but it is done only once to exchange keys that are used from

then on (see Section 4.2).

In contrast to distributed-trust based MPCS models, the use of

TEEs enables TEEMS to run its servers in the same data center by

the same operator while still achieving its security goals. Indeed,

such a setup minimizes the number of parties that are in a position

to perform the physical attacks that TEEs are vulnerable to. We

thus assume such a setup, and therefore that the servers have high-

bandwidth, low-latency connections among them.

All TEEs in the system share a symmetric key𝐾 that is generated

by them and securely stored. This key enables bootstrapping of

secure forward-secret enclave-to-enclave communication channels.

3

Proceedings on Privacy Enhancing Technologies YYYY(X) Sajin Sasy, Aaron Johnson, and Ian Goldberg

Client

Ingestion servers

Routing servers

Storage servers

Token Channel ID Channel

Account

server

Figure 1: An example of the TEEMS architecture. Arrows

indicate how messages are sent. Storage servers are shown

holding mailboxes with stored messages. Just one client is

shown, and it connects to the ingestion server and storage

server that it is assigned to in each channel.

It is also used during account creation and other tasks as outlined

below. Each server generates a public-private key pair, which is used

to secure all communication among servers and between clients

and servers. Details of key establishment appear in Section 4.2.

Threat Model. In our design, we consider an adversary that

has OS-level control of the servers, controls network communica-

tion with clients and among servers, and controls some of its own

clients. Following the TEE threat model, the adversary can perform

software attacks on the TEE machines, including the observation of

side channels intentionally left open by the TEE, such as timing and

memory-access locations. The adversary can read, modify, delay, or

drop packets arbitrarily. Our design (and implementation) algorith-

mically protects against all such adversaries. While the adversary

may control some clients, the adversary must be a third party to

the protected communication; i.e., the adversary cannot control the

sender or the receiver for our security guarantees to apply.

Like other TEE-based systems [11, 23, 29, 37, 70], denial-of-

service attacks are out of scope for this work. Microarchitectural

attacks like those based on power consumption [17, 50, 55] or spec-

ulative execution [16, 75] are orthogonal to our work, and are

mitigated by hardware manufacturers directly [34–36]. Physical

attacks, such as invasively probing TEE chips to extract keys, are

also outside of the threat model.

Goals. A main security goal of TEEMS is unobservable commu-

nication. The adversary should not be able to detect if a message

is sent at all, let alone determine the sender, receiver, or message

contents. The system should also ensure integrity of the delivered

message, and a receiver should be able to determine who sent the

received message and when.

The TEEMS performance and functionality goals are the four key

MPCS properties outlined earlier. It should provide low latency to

individual messages sufficient to support interactive conversations.

It should provide high throughput by supporting that low latency

for many simultaneous messages. It should be horizontally scalable

to grow to large numbers of users by adding servers. Finally, it

should support asynchronous communication where the senders

can send messages when they wish, and receivers can receive them

when they are online, without coordination between the two.

3.2 Token and ID Channels

The high-level system architecture is illustrated in Figure 1. In

TEEMS, messages can be sent either through the token channel
or ID channel. Each channel type is composed of a separate set of

servers, and clients communicate with each set to receive messages

on both channels. The token channel guarantees delivery within

one epoch (subject to sufficient room in the receiver’s mailbox), but

its senders must be selected in advance to share the limited system

resources. The ID channel does not guarantee delivery, but no prior

coordination is required to use it. The ID channel thus can be used

to send someone a message knowing only their user ID. Because a

large number of users may try to send an ID-channel message to

the same receiver at the same time, however, the ID channel may

drop some messages to respect the resource limits imposed by the

privacy requirement to hide how many messages a user receives.

For token-channel communications, each user 𝑢 can select up to

𝑓 other users as their friends. Each of those friends will be allowed

to simultaneously send a token-channel message to 𝑢 in the same

epoch. Friend designations are persistent across epochs and need

no further action from the user until they desire to change them.

Friends are also symmetric in that if 𝑢 is a friend of 𝑣 , then 𝑣 is

a friend of 𝑢. The symmetric relationship will facilitate updating

friend relations, as it allows such updates to be sent through the

token channel. A client must obtain tokens before sending token-
channel messages to authorize the use of the token channel for

the message receivers. A token is a credential, valid for the current

epoch, showing that a given sender and receiver are friends.

In contrast, no such authorization is required to send ID-channel

messages. Each user is limited to sending at most one and receiving

at most 𝑏 ID-channel messages in a single epoch. An ID-channel

message may be dropped, but, if not, it will be delivered within

that epoch. Message drops in the ID-channel are similar to dialing

failures in prior iterations of MPCS [2, 26]; in such systems when

many users dial the same individual, dialing completes with one

of these users at random. However, ID-channel messages have a

priority attached to them by the system, based on how frequently

a user has sent other ID-channel messages, and the system will

prefer to drop lower-priority messages when dropping is necessary.

Users have complete control over who can send them messages on

the ID channel (see Section 4.1); i.e., malicious users cannot impede

an honest client’s ID channel.

The ID channel is also used to set up and modify friend relation-

ships. Friend requests are sent through the ID channel, which can

then be confirmed through the token channel. Friend revocations

are sent through the token channel, which is possible because the

friend relation is symmetric.

This two-channel design provides several improvements over

existing MPCS. The ID channel circumvents the requirement of

a dialing protocol that many MPCS schemes require. Any MPCS

that require dialing incurs two limitations: (i) Dialing protocols add

latency and rounds of overhead before real messages can be sent. (ii)

Dialing only allows for online metadata protections; once clients

go offline, they can no longer participate in a dialing protocol, and

consequently they cannot receive messages asynchronously. To

distinguish the ID channel from dialing protocols, observe that (i)

the ID channel is a self-contained medium for metadata-protected

4

TEEMS: A Trusted Execution Environment based Metadata-protected Messaging System Proceedings on Privacy Enhancing Technologies YYYY(X)

communications, while dialing protocols bootstrap a shared-secret

for future conversation rounds. (ii) Clients can receive messages

asynchronously via the ID channel; dialing protocols require both

parties to be online. (iii) the ID channel can be run in tandem with

(or completely independent of) the token channel. Dialing, however,

always has to precede conversation protocols.

The token channel in TEEMS requires a one-time setup to estab-

lish a friendship, which can be accomplished asynchronously, and

then afterwards requires no coordination at all. We note that either

the token channel or the ID channel could be used by an MPCS in

isolation. The ID channel is completely independent of the token

channel, but the token channel would need some other method to

set up friendships.

3.3 Clients

Clients in TEEMS do not have TEEs. Clients follow a fixed connec-

tion schedule to send and receive messages. The schedule can be

randomized and may vary across clients, but it should only depend

on information that the adversary already knows (or is allowed to

know). In particular, it should not depend on if any message was

actually sent or received during prior connections. Clients will send

and receive dummy messages during a connection to hide how

many real messages were sent and received. To provide low latency

when the client is messaging, the connection schedule should have

little time between connections. However, if a client is unavailable

at a scheduled connection time, such as due to their device being off

or disconnected from the network, this deviation from the schedule

need not affect the security guarantees, as long as the unavailability

is not related to their prior messaging behavior.

At each scheduled connection, the client retrieves its stored

messages from each channel and sends any waiting messages from

the user to each channel. Every epoch, each online client will receive

exactly 𝑓 messages on the token channel and 𝑏 on the ID channel,

and it will send exactly one message over each channel; any of

those messages may be dummies.

3.4 Servers

There are four types of servers in TEEMS:

Account server: An account server handles the creation and

update of user accounts. It takes requests for new accounts from

users and assigns them ingestion and storage servers.

Ingestion server: Each client in TEEMS is assigned an ingestion

server, and this assignment is not secret. An ingestion server collects

messages from its clients, and at the start of each epoch, forwards

their messages to the routing servers.

Routing server: The routing servers jointly perform an oblivi-

ous route and pad protocol. At the end of the protocol, the routing

servers end up with the exact maximum number of messages (𝑓 and

𝑏 respectively) designated for each client’s token and ID mailbox,

and forward these messages to the storage servers.

Storage server: Each mailbox in the system is hosted on a stor-

age server, with each storage server having about the same number

of mailboxes. The system does not hide themapping between clients

and their mailbox, including its storage server and its location on

that server. Online clients receive all the messages from their mail-

box every epoch, while offline clients will have their messages

accumulate (up to a maximum size), and will receive their mailbox

the next time they connect.

The servers are logical entities, and physical machines could

run multiple servers; e.g., in an initial deployment, one physical

machine could run all the servers, and servers could be migrated to

multiple machines as the user base grows. Running multiple servers

of the same or different type on a many-core machine is beneficial,

as each server uses only a small number of cores (see Section 6).

4 Design Details

We assume that the underlying network provides asynchronous,

message-oriented communication channels between each pair of

servers and between each client-server pair. Let I , R , and S be

the sets of ingestion servers, routing servers, and storage servers,

respectively, for a given channel. When necessary, we will use

superscripts to indicate the channel (e.g., Itkn
and I id

).

Let 𝑟 = |R | be the number of routing servers, and let 𝑠 = |S | be
the number of storage servers. Let the routing servers be ordered:

R = {𝑅
1
, 𝑅

2
, . . . , 𝑅𝑟 }. For a given user 𝑢, let 𝐼𝑢 and 𝑆𝑢 be the in-

gestion server and storage server assigned to 𝑢, respectively. The

routing servers each have a set of ingestion servers that forward

messages to them and a set of storage servers that they forward

messages to. No ingestion server forwards to more than one routing

server, and no storage server is forwarded to by more than one

routing server. For a given routing server 𝑅 , let I
𝑅
be the set of

ingestion servers that forward messages to 𝑅, and let S
𝑅
be the

set of storage servers that 𝑅 forwards messages to. We assume for

simplicity that the same number of ingestion servers forwards to

each routing server and that each routing server forwards to the

same number of storage servers. Let the storage servers be ordered,

S = {𝑆
1
, 𝑆

2
, . . . , 𝑆𝑠 }, such that, for all 𝑆

ℎ
∈ S

𝑅
𝑗

and 𝑆
𝑖
∈ S

𝑅
𝑘

, if

𝑗 < 𝑘 then ℎ < 𝑖 .

4.1 User Identifiers

Each TEEMS client has a user identifier (user ID). The user identifier
is a value composed of the index of the storage server (under a

canonical ordering) followed by a unique number for that server.

Both of those components are of fixed sizes (e.g., 10 bits for the

server index followed by 22 bits for the per-server user number). The

largest value that can be represented in that fixed size is reserved

for internal use. Each identifier is thus unique. Its structure also

facilitates routing because sorting messages by the receiver’s user

ID simultaneously sorts them by the index of the receiver’s storage

server and by the index of the routing server that forwards to that

storage server. The user identifier may be guessable, and so, to

give the user some control over who can send them messages on

the ID channel, the system maintains a long form of the user ID

that also includes the MAC of the user ID under a key derived

from the shared key 𝐾 . The users must therefore distribute their

long user IDs in order to receive ID-channel messages, which they

may accomplish narrowly (e.g., only to select contacts) or broadly

(e.g., publicly via a website). To prevent ambiguity, we will always

specify when the long form of the user ID is the one being used.

5

Proceedings on Privacy Enhancing Technologies YYYY(X) Sajin Sasy, Aaron Johnson, and Ian Goldberg

4.2 Account Server

The account server coordinates key establishment for the system

and facilitates user-account management. It maintains the follow-

ing information about the other servers in the system: (1) their

addresses; (2) their public keys; and (3) a count of the number of

users assigned to each ingestion server and storage server. It also

creates the system-wide key 𝐾 . The other types of servers in the

system use a one-time two-way remote attestation to securely con-

nect to the account server and obtain 𝐾 . That key is then used to

secure a separate connection on which the server’s public key is

shared with the account server and the public keys of the other

servers are obtained from the account server. Clients use a one-time

remote attestation with the account server to securely obtain its

public key, which they then use to secure communications with it.

The account server stores an account for each user in the system.

Each account consists of the following: (1) the long user ID; (2)

authenticating information, such as password hash or a public veri-

fication key; (3) the assigned ingestion server; and (4) the assigned

storage server. This data is expected to be relatively small (less

than 100 bytes) and infrequently accessed. The number of servers is

expected to be many thousands of times less than number of users.

We expect that a single account server can accommodate billions

of users, although the account database could also simply be split

across servers. It is not necessary to hide which account is being

accessed because only the owner accesses it.

The account server 𝐴 supports the queries Create, Update, and

Delete. These queries are made by a user to create or modify their

account. In Create, the client provides its authenticating data 𝛼 .

𝐴 picks the least-loaded ingestion servers 𝐼 tkn and 𝐼 id and storage

servers 𝑆 tkn and 𝑆 id. It contacts 𝑆 tkn to obtain an available user ID

𝑢 (users are assigned the same IDs in each channel). Recall that

the high bits of 𝑢 will be the index of 𝑆 tkn. 𝐴 sends (𝑢, 𝛼) to 𝐼 tkn, 𝐼 id,
𝑆 tkn, and 𝑆 id, which they all store. 𝐴 computes a MAC tag 𝑡 on 𝑢

under the shared key 𝐾 , and sends to the client: (𝑢, 𝑡), the assigned
servers (𝐼 tkn, 𝐼 id, 𝑆 tkn, 𝑆 id), and those servers’ public keys. In Update,

user 𝑢 submits new authenticating data 𝛼 , which 𝐴 updates locally

and forwards to the assigned servers of 𝑢. In Delete, 𝐴 deletes

the account of the user 𝑢 and forwards the query to the assigned

servers of 𝑢 for them to delete. These queries are not performed

obliviously; the system does not hide if or how accounts are created

or modified.

4.3 Messages

A message is a data structure containing metadata of the mes-

sage as well as the content. Let Msrc be the user ID of the source

of a message, Mrec be the user ID of the receiver, Mpri be the

message priority, andMdata be the content. A token-channel mes-

sage is M = (Mrec,Msrc,Mdata), and a ID-channel message is

M = (Mrec,Mpri,Msrc,Mdata). The entire message has a fixed to-

tal length of ℓ (for both the token and ID channels) to hide the true

length of Mdata. Note that M may be a dummy message, indicated

by Msrc =⊥, or a real message, in which Msrc is a user ID. Dummy

messages are sent by clients and between servers as needed to hide

the number of real messages being sent.

(1) Receive token-channel messages and tokens from 𝑆 tkn𝑢
(2) Receive ID-channel messages from 𝑆 id𝑢
(3) Send Mtkn with related token, or a dummy message and

token if no such pair exists, to 𝐼 tkn𝑢
(4) Using long IDs for receivers, send Mid, or dummy message

ifMid is empty, to 𝐼 id𝑢

Figure 2: ClientInteract(Mtkn,Mid, 𝑢): Interaction proce-

dure executed by user 𝑢.

4.4 Clients

Clients send and receivemessages according to an interaction sched-

ule when they are online. The schedule may be unique to the client

and need not be coordinated with any other client. However, the

schedule must be independent of the actual client messaging be-

havior; that is, it should not depend on if a client has a real message

to send or receive. For example, a client may choose to minimize

latency by interacting every epoch they are awake and online, or

they may trade off latency for communication cost by interacting

less frequently (only every minute, hour, or day). Importantly, none

of these choices affect the security of TEEMS. In fact, later in Sec-

tion 5.2, we allow the adversary to select honest clients’ interaction
schedules when we prove TEEMS is communication unobservable.

Clients in TEEMS can go offline arbitrarily, such as when their

device is turned off or loses network connectivity.

During each interaction, the client sends and receives messages

via both the ID and token channels. Some ordering among those

actions is needed, for example retrieving a token before sending

a token-channel message. Figure 2 shows the ClientInteract

algorithm that a client uses during an interaction. Note that Steps

1 and 2 can be performed in parallel, as can Steps 3 and 4.

4.5 Ingestion

Ingestion servers in both channels first authenticate a connecting

client using the stored user IDs and authentication data. Each epoch,

the ingestion server receives one message from the user, which it

validates by checking that the source user ID is correct and then

stores until the next epoch starts. When the next epoch starts, each

ingestion server forwards its stored messages to its routing server.

In the token channel, the client always sends one message and

token; if the client has none, it sends a dummy message and token.

The ingestion server validates the token by checking that it contains

the same receiver ID as the message, that it is valid for the upcoming

epoch, and that it has a valid MAC tag. Any invalid messages are

replaced with dummy messages. The tokens are discarded and are

not forwarded further.

In the ID channel, the client always sends one message, using

a dummy message if necessary. The client includes the long user

ID in the message. The ingestion server validates the MAC tag

in the received long user IDs, turning the message into a dummy

message if the check fails. Then it discards that MAC tag from the

message, as it is no longer needed. An ID-channel ingestion server

also maintains a record of the time since a real message was last

sent by each of its assigned users to each other user within a short

recent period (e.g., the last 5 minutes), which is used as the priority

to determine which messages to drop, if necessary. That record

6

TEEMS: A Trusted Execution Environment based Metadata-protected Messaging System Proceedings on Privacy Enhancing Technologies YYYY(X)

Round 1 (Scatter) After receiving the messages for this epoch

from the ingestion servers, obliviously sort the messages by the

user IDs of the receivers and send the messages in round-robin

order to the routing servers. That is, given sorted messages𝑀 ,

send message𝑀 [𝑥] to 𝑅
𝑗
, where 𝑗 = (𝑥 mod 𝑟) + 1.

Round 2 (Distribute) Obliviously append dummy messages such

that the number of messages destined for each storage server is

𝑦 = ⌊𝑓 ⌈𝑛/𝑠 ⌉/𝑟 ⌋ + 𝑟 . Obliviously shuffle the messages, and send

them to the routing server that forwards to the receiver’s storage

server.

Round 3 (Forward) Obliviously mark for deletion 𝑦𝑟 − 𝑓 ⌈𝑛/𝑠 ⌉ of
the dummy messages for each storage server. Obliviously shuffle

the messages, and then forward them to their receivers’ storage

servers.

Figure 3: TokenColumnRoute: Token-channel routing

is updated obliviously when a message is received from a client.

When a message is received, the ingestion server copies into the

Mpri component of the message how many epochs ago the user

last sent an ID-channel message to the recipient. This value gives

higher priority to messages from users that have not recently sent

to that recipient via the ID channel.

4.6 Routing

We use similar routing algorithms for the ID and token channels.

Our routing algorithms are derived from columnsort [49], a dis-

tributed sorting algorithm. Columnsort has been used as is in other

TEE-based distributed systems [79] for oblivious distributed sorting.

We observe that routing is a slightly easier problem than sorting

because the values of the sorting “keys” (i.e., the server indices)

directly imply the server the item should end up on. Hence, while

columnsort could serve as an oblivious routing protocol, our oblivi-

ous routing protocols reduce the communication (by one round)

and computation (from four oblivious sorts to one oblivious sort

and two oblivious shuffles) overheads in comparison.

In the ID channel, however, we must also first determine if any

receiver has been sent more messages than can be delivered in

the epoch and, if so, drop the excess messages with the lowest

priorities. We accomplish this with a distributed sort as well, this

time using both the receiver user ID and the message priority as

keys. Our protocols, however, encounter an additional challenge

over columnsort; we need to add and manipulate dummy messages

without revealing to the OS-level adversary which are dummies.

Let 𝑛 be the total number of users. A description of the token-

channel routing algorithm, TokenColumnRoute, is given in Fig-

ure 3. The ID-channel routing algorithm, IDColumnRoute, is de-

scribed in Figure 5. The descriptions give the actions of a routing

server by round, each of which consists of receiving messages,

performing computation, and then sending messages. Additional

details of these algorithms appear in Appendix D.

4.6.1 TokenColumnRoute. In Round 1 of the token-channel rout-

ing algorithm (Figure 3), routing server 𝑅
𝑖
will “scatter” the mes-

sages it receives from its ingestion servers I
𝑅
𝑖

. This step is accom-

plished by sorting the messages by the user IDs of the receivers,

which simultaneously puts them in order of the storage servers

Figure 4: TokenColumnRoute example with 𝑛 = 12, 𝑟 = 3,

𝑠 = 3. Message labels are the recipient user ID (storage server

index | per-server user number). Message colors in Round 1

simply highlight how messages get scattered. Grey messages

indicate dummies, and red ones indicate messages that were

marked as dummies and do not get forwarded in round 3.

𝑦 = ⌊𝑓 ⌈𝑛/𝑠 ⌉/𝑟 ⌋ + 𝑟 = 4. The additional 𝑟 messages dominates

𝑦 in the figure, but in practice 𝑛 ≫ 𝑟 .

of the receivers because each user ID begins with the index of

that user’s storage server, and then sending the sorted messages in

“round-robin” order to the routing servers. The number of scattered

messages is the same as the number of messages received from the

ingestion servers. It is safe to reveal this number, because the ad-

versary can observe the clients connecting to the ingestion servers.

This round (corresponding to the “transpose” step of columnsort)

has the effect of scattering the messages intended for each storage

server nearly evenly across the routing servers.

In Round 2 of TokenColumnRoute, 𝑅
𝑖
will “distribute” the mes-

sages it received in the previous round to the routing servers that

forward to the receivers’ storage servers. To accomplish this, the

server first obliviously counts how many messages have receivers

at each storage server via a linear scan on the messages. The tokens

have already enforced that no user receives more than 𝑓 messages

in an epoch, and therefore, due to the even scattering from the pre-

vious step, we can be sure that there are at most 𝑦 = ⌊𝑓 ⌈𝑛/𝑠 ⌉/𝑟 ⌋ +𝑟
messages for each storage server. The 𝑟 additive term is due to the

scatter step imperfectly distributing messages, possibly leading to

two routing servers differing by at most 𝑟 in the number of mes-

sages with receivers assigned to a given storage server, and ensures

that each message can be routed to the correct routing server in

this step. The server obliviously computes the number of dummy

messages needed to reach the value𝑦 for each storage server, oblivi-

ously adds that number of dummies at the end, and then obliviously

shuffles the messages. Since there are now guaranteed to be exactly

𝑦 messages destined for each storage server, the shuffle allows us

to take advantage of the Scramble-then-Compute [22] paradigm

to non-obliviously send each message in the shuffled buffer to the

routing server that forwards to the storage server for its receiver.

In Round 3 of TokenColumnRoute, the routing server will for-

ward the messages to the storage servers of their receivers. The

routing server first reduces the messages with the same receiver

storage server by eliminating the 𝑟 added in the previous round be-

cause at most 𝑓 ⌈𝑛/𝑠 ⌉ could be destined for each storage server. Next,
the routing server obliviously shuffles the messages to hide which

7

Proceedings on Privacy Enhancing Technologies YYYY(X) Sajin Sasy, Aaron Johnson, and Ian Goldberg

Round 1 (Sort1) After receiving the messages for this epoch from

the ingestion servers, obliviously sort the messages by the user IDs

of the receivers and the priorities and send the messages in

round-robin order to the routing servers. That is, given sorted

messages𝑀 , send message𝑀 [𝑥] to 𝑅
𝑗
, where 𝑗 = (𝑥 mod 𝑟) + 1.

Round 2 (Sort2) Obliviously sort the messages received in the last

round by the receivers’ user IDs and the message priorities. Let

𝑤 = ⌈𝑏 ⌈𝑛/𝑟⌉/𝑟⌉, and send the 𝑗th subsequence of𝑤 messages in

the sorted list to 𝑅
𝑗
.

Round 3 (Sort3) Obliviously sort the messages received in the last

round by the receivers’ user IDs and the message priorities. Let

𝑧 = max((𝑟 − 1)2, 𝑏), and𝑀 be the sorted array. If 𝑖 > 1, send

messages𝑀 [1..𝑧] to 𝑅
𝑖−1. Also, send state 𝑡 = 𝑣 ∥ 𝑐 , where 𝑣 is the

user ID of the recipient of message𝑀 [𝑧 + 1], and 𝑐 is the number

of messages in𝑀 [𝑧 + 1..𝑧 + 𝑏] with same receiver ID (extracted

trivially via a linear scan of 𝑏 messages).

Rounds 4 & 5 After receiving 𝑧 messages𝑀′
and 𝑡 from the next

routing server 𝑅
𝑖+1 (if any), append𝑀

′
to𝑀 . For 𝑖 < 𝑟 , obliviously

sort the 2𝑧 messages𝑀 [𝑤𝑟 − 𝑧 + 1..𝑤𝑟 + 𝑧] together. Let 𝑥 = 𝑧 + 1

if 𝑖 > 1; else let 𝑥 = 1. Let 𝑦 = 𝑤𝑟 + 𝑧 if 𝑖 < 𝑟 ; else let 𝑦 = 𝑤𝑟 .

Obliviously count the messages to each user in𝑀 [𝑥 ..𝑦] and
convert to dummy messages the lowest priority messages to a

given user exceeding 𝑏 total, starting this process with the state 𝑡 .

Move all dummies in𝑀 [𝑥 ..𝑦] to the end via oblivious compaction.

Finally, proceed with Rounds 2 and 3 of TokenColumnRoute,

using𝑀 [𝑥 ..𝑦] as the message list and using 𝑏 instead of 𝑓 .

Figure 5: IDColumnRoute: ID-channel routing at server 𝑅
𝑖

messages were removed in the previous step. Finally, it simply for-

wards each message to the storage server of its receiver. Figure 4

provides an example of the TokenColumnRoute protocol.

4.6.2 IDColumnRoute. The ID-channel routing algorithm (Fig-

ure 5) is more complex because a token is not required to send

a message. As a result, a receiver might be sent more messages

than the system can deliver to them in a given round. To handle

this challenge, IDColumnRoute effectively performs the complete

columnsort algorithm (Rounds 1–3) to determine if a receiver is

being sent more than the 𝑏 messages they can receive. If so, the

lowest-priority excess messages are removed by converting them to

dummymessages (Round 4). After that point, TokenColumnRoute

can be applied directly (Rounds 4–5).

The distributed sort accomplished by IDColumnRoute in Rounds

1–3 is able to complete in one fewer round than given in columnsort

because the distribution of the first and last 𝑧 = max((𝑟 − 1)2, 𝑏)
items (i.e., the “shift” and “unshift” steps in columnsort) can be

simplified and parallelized in our case. Instead of each server 𝑅
𝑖

sending its first and last 𝑧 items to 𝑅
𝑖−1 and 𝑅𝑖+1respectively, we

have each 𝑅
𝑖
send (i) its first 𝑧 items to 𝑅

𝑖−1, and (ii) a state 𝑡 with

the receiver user ID of item 𝑧 + 1 at 𝑅
𝑖
, and the number of items

destined for this user ID in the next 𝑏 items (after the first 𝑧 items).

Thus, in Round 4, after sorting its last 𝑧 items with the received 𝑧

items, 𝑅
𝑖−1 can remove any excess messages it holds for a given re-

ceiver by converting them to dummymessages. Because the sorting

was performed on the receiver user ID and then the priority val-

ues, taking the excess messages from the first messages for a given

Figure 6: IDColumnRoute example with 𝑛 = 8, 𝑟 = 2, 𝑠 = 2,

𝑏 = 2. 𝑧 = max((𝑟 − 1)2, 𝑏) = 2. Message labels are the recipi-

ent user ID (storage server index | per-server user number)

followed by the priority. Message colors in Round 1 and 2

simply highlight how messages get scattered. Blue messages

in Round 3 and 4 correspond to the state message 𝑡 . Red indi-

cates low-priority messages that get dropped (i.e., marked as

dummies). Otherwise a user would receive more than 𝑏 mes-

sages this epoch. After performing the illustrated steps, obliv-

iously compact the real messages and proceed with Rounds

2 and 3 of TokenColumnRoute.

user guarantees that the lowest-priority messages are removed.

After the excess messages are converted to dummy messages, the

receivers are guaranteed to have at most 𝑏 messages in the sys-

tem, and the steps of the token-channel routing algorithms are

performed. Figure 6 provides an example of the IDColumnRoute

protocol.

We note that in TEEMS, as presented, all routing is accomplished

by the routing servers. However, we can reduce the rounds and

communication by having ingestion and storage servers involved in

the first and last rounds of routing, respectively, instead of merely

forwardingmessages to and from them. This variant can also reduce

computation by eliminating the oblivious shuffle in the final round

of routing, because it is made redundant by the initial message sort

done by the storage server. We use this variant in our implemen-

tation because it is faster in the small deployments we consider

experimentally. The original variant, on the other hand, is both

simpler to describe and improves bandwidth utilization in larger de-

ployments when throughput limits on the all-to-all communication

pattern are reached.

4.7 Storage

Storage servers in each channel maintain a mailbox for each user

assigned to them. The token-channel storage servers also main-

tain, for each of their users, a list of the user IDs of their friends.

Each mailbox has a short-term and a long-term component, where

messages are initially stored in the short-term mailbox and are

eventually moved to the long-term mailbox if not yet sent to the

client. Both mailboxes are simple lists of messages. However, the

short-term mailbox is an append-only list that starts empty and in-

creases to a maximum length of𝑚1 messages, while the long-term

mailbox is fixed-size list of𝑚2 messages.

Both mailboxes may contain both real and dummy messages.

The short-term mailbox is designed to provide efficient per-epoch

updating via a simple append operation. However, to hide how

many real messages are delivered in an epoch, the same number

of messages (real or dummy messages) must be added in each

8

TEEMS: A Trusted Execution Environment based Metadata-protected Messaging System Proceedings on Privacy Enhancing Technologies YYYY(X)

epoch. To avoid unlimited growth, the real messages in the short-

term mailbox are periodically (i.e., less often than every epoch)

transferred to the long-term mailbox via a compaction operation.

During an epoch, a storage server receives a list of messages

from its routing server. The server attaches a current timestamp to

each of the received messages, which enables clients to determine

when the message was received, then obliviously sorts the messages

by receiver user ID. Next, storage server 𝑆
𝑗
counts the number of

messages intended for each user via a linear scan. It performs a

reverse compaction so that the messages whose receiver is the 𝑖th

user assigned to 𝑆
𝑗
appear in sequence starting in position 𝑓 · 𝑖 (or

𝑏 · 𝑖 for the ID channel), where the dummy messages will end up

filling any gaps between those positions. Then, via another linear

scan, 𝑆
𝑗
appends all of the messages for each user, including dummy

messages, to their short-term mailbox. Note that this operation is

inherently oblivious.

Because the short-term mailbox would otherwise grow without

bound, the real messages it contains are periodically transferred

into the long-term mailbox. If and when this transfer occurs de-

pends on how recently the client has interacted with the system,

which is observable to the adversary and thus does not reveal any-

thing about the mailbox contents. A transfer occurs if the client has

interacted more than𝑚1/𝑓 epochs ago. At that point, the storage
server transfers the real messages between mailboxes obliviously

by first appending the short-term mailbox to the long-term mail-

box, next using order-preserving compaction to move any dummy

messages to the end while maintaining existing messages in the

long-term mailbox, and finally dropping the messages that appear

after position𝑚2.𝑚1 should be set to hold messages for a short

period, and𝑚2 should be set to hold the messages that might accu-

mulate during a disconnection period; e.g., with 256-byte messages

and 4-byte timestamps,𝑚1 = 1200 (312 KB) would hold 10 minutes

of messages for one-second epochs and 𝑓 = 𝑏 = 2, and𝑚2 = 100

(26 KB) would hold 100 real messages.

When a client runs ClientInteract, the storage server sends

the client a copy of the short-term mailbox and deletes all messages

from it. If the short-term mailbox has been emptied into the long-

term mailbox since the last client interaction, the server also sends

a copy of the long-term mailbox and then overwrites the long-term

mailbox with dummy messages. Note that these long-term mail-

boxes are completely independent of the actual routing protocols of

TEEMS. Whether a client’s mailbox needs to be compacted or not is

not a secret; it is based on when the client last connected to TEEMS.

Hence long-term mailbox storage and compaction can be handled

by servers independent of our routing protocols. Additional details

of these algorithms appear in Appendix D.

4.8 Friends

Friend relationships are symmetric, and the process to establish

one begins with a friend request. The request must be accepted

within 𝑒 epochs of the request being issued, where 𝑒 is set to create

a relatively short expiration period (e.g., a day). Several of the steps

involved in managing friend requests require extra communica-

tion or extra computation by the various parties involved in the

process. Such communication and computation is performed (or

simulated) every time such an action might be necessary to avoid

leaking whether a friend relationship is being changed. However,

the urgency of completing such changes is lower than delivering

a message, and so we set a frequency 𝜙 at which friend-update

messages or operations may be performed (e.g., 𝜙 = 10 indicates

such operations will happen once every 10 epochs).

The process for 𝑢 to establish a new friend relationship with 𝑣 is:

1. 𝑢 reserves a friend slot for 𝑣 at the token-channel storage

server 𝑆 tkn𝑢 , recording in that slot the current epoch and assigning

it a nonce 𝜁 . A slot reservation may be made in a free slot or one

reserved more than 𝑒 epochs prior. 𝑆 tkn𝑢 creates and returns a friend

request 𝐹 , which includes the current epoch, the source 𝑢, the

receiver 𝑣 , the nonce 𝜁 , and a MAC of those contents under key 𝐾 .

2.𝑢 submits 𝐹 to 𝑣 via the ID channel as the contents of a normal

message to 𝑣 .

3. If the ID-channel storage server 𝑆 id𝑣 receives a friend request 𝐹

with a valid MAC and with the current epoch, it delivers the request

to 𝑣 ’s mailbox.

4. After 𝑣 ’s client receives 𝐹 , the user can manually approve it

if it has a friend slot free. If the epoch in the request is within 𝑒 of

the current one, 𝑣 ’s client sends the accept response 𝐺 to 𝑢 via the

token channel. 𝐺 contains the request 𝐹 , indicates acceptance, and

is sent in a normal token-channel message.

5. When token-channel ingestion server 𝐼 tkn𝑣 receives a friend

response 𝐺 , it validates the MAC in 𝐹 and checks that the request

was sent less than 𝑒 epochs in the past. If so, it forwards 𝐺 as with

a normal message with a valid token. At the same time, it directly

contacts 𝑣 ’s token storage server 𝑆 tkn𝑣 to inform it that a friend

relationship is being confirmed with 𝑢. 𝑆 tkn𝑣 adds 𝑢 as a friend of 𝑣

and sends an updated list of friendships to 𝑣 .

6. When 𝐺 is received by the storage server 𝑆 tkn𝑢 , the server

detects that it is such a response, validates the MAC tag, and checks

for the expiration of the contained request 𝐹 . If either check fails, the

response is ignored. Otherwise, 𝑆 tkn𝑢 identifies the reserved friend

slot with a matching nonce and records the confirmed friendship.

𝑆 tkn𝑢 sends an updated list of friendships to 𝑢.

If user 𝑢 wants to revoke an existing friendship with user 𝑣 :

1. 𝑢 creates a revocation request 𝐹 and sends it on the token

channel included in a normal message. Since 𝑢 and 𝑣 are friends, 𝑢

can send a token-channel message to 𝑣 .

2. After receiving 𝐹 , the ingestion server 𝐼 tkn𝑢 directly contacts

the storage server 𝑆 tkn𝑢 to tell it to remove 𝑣 as a friend of 𝑢.

3.When 𝐹 arrives at the storage server 𝑆 tkn𝑣 , the server detects

the revocation request, removes 𝑢 from 𝑣 ’s friend list, and sends an

updated list of friendships to 𝑣 .

As noted, the maintenance of friendships requires some com-

putation and communication beyond what is required for normal

messaging, and the system must perform these obliviously to hide

not just which users have friendships but also if a user is updating

their friendships at all. The added (possibly dummy) actions are (1)

𝑢 sends a slot reservation command to 𝑆 tkn𝑢 , and 𝑆 tkn𝑢 obliviously pro-

cesses the request and returns a friend request; (2) 𝑆 id𝑣 obliviously

identifies valid friend requests; (3) 𝐼 tkn𝑢 obliviously identifies valid

friend responses and revocations, it sends a friend update to 𝑆 tkn𝑢 ,

and 𝑆 tkn𝑢 obliviously updates the friend list of 𝑢; (4) 𝑆 tkn𝑢 obliviously

identifies valid friend responses and revocations and updates the

associated friend list; and (5) 𝑆 tkn𝑢 sends an updated friend list to 𝑢.

The system performs these additional actions only once every 𝜙

9

Proceedings on Privacy Enhancing Technologies YYYY(X) Sajin Sasy, Aaron Johnson, and Ian Goldberg

epochs, due to their lower urgency and frequency. The storage and

ingestion servers limit each user to performing one friend request,

response, and revocation during such an epoch. The system thus

makes friendship operations as unobservable to the adversary as it

makes sending messages.

5 Analytical Evaluation

5.1 Efficiency

We focus on messaging costs, as the costs of the maintenance proce-

dures for accounts and friends are much lower. A detailed analysis

is presented in Appendix F. There is no asymptotic difference in the

runtimes between the token and ID channel, and asymptotically

TEEMS incurs an online cost of 𝑂 (ℓ (𝑛/𝑟 + 𝑟 𝑠) log(𝑛/𝑟 + 𝑟 𝑠)), and
an offline cost of 𝑂 ((𝑛/𝑟 + 𝑟 𝑠) log3 (𝑛/𝑟 + 𝑟 𝑠))

In the token channel, communication is dominated by the Dis-

tribute round (Round 2), in which each server sends and receives

𝑂 (𝑛/𝑟 + 𝑠𝑟) messages, where the 𝑠𝑟 term is due to the 𝑟 messages

added for each storage server to ensure enough space to send mes-

sages to the appropriate routing server. In the ID channel, total

communication is also dominated by the Distribute round (Round

4), as all servers must send the maximum possible to each storage

server. Before that round, no dummy messages are added. Storage

servers send and receive 𝑂 (𝑛/𝑠) messages because mailboxes are

evenly distributed across storage servers.

To consider how the system as a whole scales with the number of

users, assume for simplicity that 𝑠 = 𝑟 and that 𝑛/𝑠 is integral. Then
in the token channel the total communication and computation

per routing server is proportional (up to logarithmic factors) to

the total number of messages that server sent or received, which

is (2𝑓 + 1)𝑛/𝑟 + 𝑟 2. To minimize this value, we set 𝑟 as a function

of 𝑛: 𝑟 = ((2𝑓 + 1)𝑛/2)1/3. At this value, the number of users per

routing server becomes (2𝑛2/(2𝑓 + 1))1/3 = 𝑂 (𝑛2/3), and similarly

for the ID channel with 𝑏 in the place of 𝑓 (since the load on the ID

channel is roughly a constant 2× that of the token channel).

This analysis indicates that the load per router grows with the

number of users. Ingestion and storage servers are easy to keep

at constant load, as an arbitrary number of them can connect to

a single routing server. Although the increasing load on routing

servers does limit system scalability, our experimental results (Sec-

tion 6) indicate that the system can scale to at least tens of millions

of users. Those results show that we can obtain message latencies

of less than our target 3 seconds when each (single-core) server has

up to 190, 000 users. Following the above analysis, we can stay at

or below this load per routing server with as many as 𝑛 = 101M

users, which requires 𝑟 = 532. At this size, TEEMS could host the

estimated 40–100 million users of the Signal messaging app [32],

which is popular among the privacy-conscious.

Scaling TEEMS to even larger sizes may be possible by chang-

ing its routing algorithm. The routing servers essentially sort the

messages by the storage server of the recipient, and networks of

constant node degree exist for such distributed sorting, including

butterfly-routing and sorting networks [7, 9]. However, such net-

works require at least log
2
𝑛 rounds compared to the two rounds of

TokenColumnRoute.

5.2 Security

The definition of Communication Unobservability (CU) for a system

like TEEMS appears in Appendix E (Definition E.1). The underlying

security game (Figure 9) is an instance of the Communication Un-

observability game as defined by Kuhn et al. [39]. That definition

is generic, which we make specific for our adversary model. In our

game, the adversary can run some malicious clients, chooses the

interaction and messaging behavior of all clients, and designates

one challenge message, which is not sent if the challenge bit is zero.

As with all prior MPCS, compromised-friend attacks are outside of

our threat model [5], which we realize by requiring the challenge

message to be between honest users. The challenger executes the

system and returns to the adversary the observables in our threat

model: messages received by malicious users, network messages,

and the internal execution traces of the servers. The server execu-

tion traces include the intructions and memory locations accessed

but do not include memory contents, which models a TEE threat

model in which memory is encrypted but side channels can reveal

access information. The adversary is then challenged to guess if

the challenge message was sent or not.

We prove the security of the token and ID channels individually.

These channels can be used on their own, or, as described in Sec-

tion 4.8, composed for friend management. Theorem 1 shows that

each TEEMS channel is Communication Unobservable. A proof of

this theorem appears in Appendix E.

Theorem 1. The token and ID channels in TEEMS are each CU.

While the definition of CU security we have adapted from Kuhn

et al. [39] addresses a passive adversary only, we informally claim

several security properties of TEEMS with respect to an active ad-

versary. Foremost, the system is still CU against an active network

adversary, as the messages in an epoch use authenticated encryp-

tion and are dropped if the integrity check fails. Dropped messages,

which an active adversary can also accomplish directly, cause the re-

ceiving server to stop executing for the epoch, which is predictable

to the adversary and thus leaks no information. Modified or dropped

messages from or to clients cause the sent or received messages to

be dropped without any consequent halting of the system in that

epoch. The integrity of TEE enclaves and the attestation process

prevents any server from performing its prescribed calculation in-

correctly due to an active adversary. Malicious clients may send

malformed messages, but they are easily obliviously recognized by

the ingestion server and replaced by dummy messages.

We further claim that TEEMS provides message integrity against

an active adversary, including for the message content, sender,

and timestamp. To defend this claim, we observe that the inges-

tion servers authenticate users and ensure that the authenticated

identity matches the senders in the submitted messages. TEE cor-

rectness and the use of secure channels between enclaves ensures

that the sender and content stay correct until delivered to the user.

Messages are delivered in the epoch after they are received (if they

are delivered at all), and so the TEEs at the storage servers attach

the correct timestamp before delivery to the client.

10

TEEMS: A Trusted Execution Environment based Metadata-protected Messaging System Proceedings on Privacy Enhancing Technologies YYYY(X)

Figure 7: Measuring ID and token channel epoch times as

the number of clients increases with a fixed set of 4 four-

core servers. Both axes are log scale. Messages are 256B in

TEEMS, while they are 128B in Sparta. At 2
20

clients, TEEMS

improves latency and throughput by 18× over Sparta.

6 Experimental Evaluation

We implemented the token and ID channel protocols of TEEMS,

and present benchmarks in this section. Our implementation is

written in C++, is open source, and is publicly available at https://git-

crysp.uwaterloo.ca/iang/teems. Our evaluations evince TEEMS’

ability to support low-latency and high-throughput metadata-pro-

tected communications, while being able to scale horizontally as

more users join the system.

Experiment Setup. All our experiments are performed using an

Intel SGX machine with two Xeon 8380 CPUs @ 2.30GHz with 40

cores each. We implement multiple servers by instantiating each

logical server (that runs all three server processes of ingestion,

routing, and storage) on our machine with a single core assigned to

it; we set aside 8 cores for simulating clients on the same machine.

Consequently, the largest of our experiments present instantiations

of TEEMS with up to 72 servers. For a direct comparison, we also

run Sparta’s implementation [30] on our setup.

We envision a real-world instantiation of TEEMS would have all

servers in a data center and assume 13Gbps network bandwidth

between servers (like prior work [23, 37]). Our reported timings

account for latency overheads of this network bandwidth, even

though all our servers are situated on the same machine. All mes-

sages (even those between servers on the same machine) in our

implementation are sent over TCP sockets, with forward-secret

enclave-to-enclave encryption. This running of multiple servers on

the same machine is not just an artifact of our experiment; a real

deployment of TEEMS could also run multiple TEEMS servers on

a single many-core machine. As we run all of our benchmarks on

the same server, larger experiments incur paging overheads. This

implies our results are conservative and in practice TEEMS would

yield better performance when instantiated as a distributed system.

In our implementation, we use ORCompact [67] for oblivious

compaction. For reverse compaction, we design and implement

ORExpand, which runs the ORCompact algorithm in the reverse

direction. For efficiency, TEEMS leverages the recent offline/online

oblivious shuffling (WaksShuffle) and sorting (WaksShuffle+QS)

algorithms of Sasy et al. [69], and we build TEEMS with their obliv-

ious algorithm library [68]. Our timing results presented only incur

the online phase of these oblivious shuffles and sorts. In practice,

Figure 8: Measuring ID and token channel epoch times for

TEEMS as the number of single-core servers increases with a

fixed set of 2
20

clients. Both axes are log scale. Messages are

256B in TEEMS, while they are 128B in Sparta.

as long as the server has a few additional cores available, they can

be used in parallel with each epoch of ID/token route to perform

the precomputation required for the next epoch. For instance, with

2
20

clients, we can use 24 single-core server processes for rout-

ing in the token channel and 40 for the ID channel, so that the

latencies are similar in the two channels at just under one second.

Then each server would need around 2.4 and 2.1 additional cores

for precomputation in the token and ID channels, for a total of 64

server processes and 205 cores (for both channels together). Since

we have a limited number of cores in our experimentation setup,

we perform these precomputations up front before an epoch to

measure TEEMS’ scalability.

In our experiments, we set the message size to 256 bytes, and

users send and receive exactly one message in every epoch for

both token (𝑓 =1) and ID channel (𝑏=1) cases. This configuration of

TEEMS matches prior MPCS [26, 37, 42, 44] where users send and

receive exactly one message every epoch (see Table 6 in Appendix G

for performance comparisons). These parameters can be tuned to

allow for a clients to receive more messages at the expense of more

server computation. In our experiments, all TEEMS servers perform

all three roles of ingestion, routing, and storage. Allocating servers

designated roles also presents another axis that can be tuned to

improve performance and scale horizontally.

Latency and throughput with fixed servers. In Figure 7, we

observe the latency overheads of TEEMS with 4 four-core servers,

as the number of clients in the system increases. Even in this

small-scale experiment, TEEMS can enable metadata-protected

messaging for 2
16

clients in under 0.39 s/0.66 s (token/ID chan-

nel), and a throughput of 168K/99K messages per second. As the

number of users in the system increases, epoch latency grows lin-

early with a constant < 1 in the client range we evaluate; i.e., dou-

bling the number of clients with the same number of servers yields

slightly less than 2× the epoch latency. At 2
20

clients with 4 servers,

TEEMS performs one epoch in 2.6 s/3.8 s, exhibiting a throughput

of ≈400K/274K messages per second. In contrast, Sparta with the

same amount of server resources takes 47.5 s for one full round,

exhibiting a throughput of ≈22 K messages per second. TEEMS’ to-

ken channel presents over 18× improvement in end-to-end latency

and throughput over Sparta.

11

https://git-crysp.uwaterloo.ca/iang/teems
https://git-crysp.uwaterloo.ca/iang/teems

Proceedings on Privacy Enhancing Technologies YYYY(X) Sajin Sasy, Aaron Johnson, and Ian Goldberg

Table 1: Comparing MPCS for metadata-protected messaging.

‘O’ implies the system has a receiver anonymity set of cur-

rently online users. ‘A’ indicates that all users (irrespective

of whether they are online or offline) are part of the receiver

anonymity set. The for Loopix’s asynchronous property

reflects its trusted service provider assumption (see Section 7,

and for Groove since it only allows for partial asynchrony

(see Section 2.2). Additionally, in Appendix G we report per-

formance numbers that demonstrate TEEMS’ improvement

in latency and throughput over these systems.

System Low High Horiz AsyncReceiverCUS

LatencyThrputScalable Anon Set

Clarion [26] O

XRD [42] O

Karaoke [44] O

Groove [8] O

Loopix [62] A

SealPIR [4] A

Sabre [74] A

Boomerang [37] O

Sparta-LL [29] A

Sparta-SB/D [29] A

TEEMS A

Horizontal Scalability. Next, we analyze how well TEEMS scales

horizontally. In Figure 8, we observe the total time taken to route

token and ID channel messages of 2
20

clients, as a function of

the number of servers. We observe that with fixed number of

clients, doubling the number of servers consistently results in ≈30–
40% reductions in the epoch latency. Routing messages from 2

20

clients, gradually drops down from 4.4 s and 5.1 s (throughput of

≈240K/206K messages per second) for token and ID channels with

just four (single-core) servers, all the way down to 0.53 s/0.80 s

(throughput of ≈2.0M/1.3M messages per second) with 72 (single-

core) servers, exhibiting TEEMS’ ability to scale horizontally to

maintain low latency and high throughput as the user base grows.

In contrast, Sparta’s total time reduces from 76.9 s to 25.9 s over

the same range of server cores. However, Sparta is by design not

horizontally scalable (see Appendix A.3). The added server cores can

only parallelize their bottleneck oblivious sorts. While our results

demonstrate the ability of TEEMS to deliver messages in under one

second, in practice a latency in the order of a few seconds, about

the time it takes to actually type a message, would suffice.

7 Related Work

Over the last two decades several novel MPCS designs have been

proposed [66]. However, a substantial fraction of these construc-

tions [1, 19, 40, 41, 43, 51, 57] are broadcast systems, where clients

publish a message to all other users of the system. In contrast,

TEEMS aims to provide pairwise messaging for its clients. Moreover,

TEEMS targets the strong metadata-protection goal of a Communi-

cation Unobservable System (CUS). As we observe in Appendix A.1,

the weaker goals of sender or receiver unlinkability can be vulnera-

ble to traffic analysis, as it is common for the members of a commu-

nicating pair of clients to repeatedly swap the roles of sender and

receiver during a single conversation. Table 1 presents an overview

of how state-of-the-art MPCS satisfy the goals of TEEMS.

Clarion [26] is the latest iteration of a multiparty computation

based CUS [2], but it incurs high latency and lacks scalability in

comparison to mixnet-based designs. Mixnet-based designs have

produced many high-throughput constructions, and some of them

have low latency and are horizontally scalable as well, but they all

lack asynchronicity. XRD [42] presents a mixnet-based CUS that

is more efficient than prior pure mixnet based approaches [15, 41].

Mixnet-based designs drastically improved latency and through-

put by incorporating differential privacy to hide the metadata of

adversary-observable parameters of the system. This line of works

started with Vuvuzela [77], and was followed by its horizontally

scalable variants Stadium [73], Karaoke [44], Groove [8], and Yo-

del [45]. Yodel is tailored for metadata-protected voice calls; each

round incurs an expensive one-time circuit establishment phase, to

enable long-duration low-latency voice calls; this is not appropriate

for messaging. In Table 1, Karaoke and Groove represent this line

of works.

The improvements in throughput and latency, however, are at

the expense of shifting the underlying privacy guarantee to a differ-

entially private one rather than a cryptographic one. A fundamental

shortcoming of such MPCS is that the privacy guarantees have a

finite duration that they are configured for. The faster such dif-

ferential privacy systems become, the quicker they expend their

allocated privacy budget (for meaningful privacy guarantees) re-

quiring either a system reset or users attaining weaker and unclear

privacy guarantees. Boomerang [37], inspired by Karaoke, presents

an MPCS that leverages TEEs to avoid using differential privacy.

However, just like all the other aforementioned mixnet designs,

they cannot support asynchronous clients, and they all have to

incur the additional overheads of a dialing protocol before any

actual communication. Loopix [62] represents an outlier among

mixnet-based MPCS designs as it can support asynchronous clients,

but at the expense of trusting special “service provider” nodes in

the system, and adversarial providers can subvert clients’ metadata

privacy. Moreover, Loopix has the weakest form of the manytrust

assumption due its underlying stratified network structure [66].

Most designs that can support asynchronous clients have stemmed

from PIR-based techniques [4, 6, 18, 65, 74]. Pung [6] and its suc-

cessor SealPIR [4] present a CUS through single-server computa-

tional PIR, and consequently incur significant computational over-

heads. Express [27] presents a Reverse PIR based mailbox system for

end-to-end metadata protected communications, and its successor

Sabre [74] improves the performance of this style of mailbox system.

In Table 1, we present Sabre and SealPIR as representatives for these

two PIR-based approaches. Ultimately, such schemes can offer low

latency for message delivery and retrieval, but they have to handle

each message individually and consequently have poor throughput.

Moreover, both latency and throughput degrade as more users join

the system, as they cannot efficiently scale horizontally.

Sparta [29] is a TEE-based design that provides asynchronous

communication. Sparta is a Receiver Unobservable System (RUS),

but because it reveals who sends messages and when, it can re-

veal when a pair of users is communicating back and forth, thus

falling short of its stated goal to resist traffic analysis and showing

the advantage of communication unobservability (provided by a

12

TEEMS: A Trusted Execution Environment based Metadata-protected Messaging System Proceedings on Privacy Enhancing Technologies YYYY(X)

CUS like TEEMS). Sparta provides variable-size mailboxes with the

goal of never dropping messages. It has three variants: Sparta-LL

provides low latency but not high throughput, and both Sparta-SB

and Sparta-D provide high throughput but not low latency. More-

over, no Sparta variant scales horizontally, including the partially

distributed Sparta-D design due to its centralized query processor.

In addition, Sparta-SB and Sparta-D possess a critical information

leak when the system hits its storage capacity, which both violates

the receiver unobservability goal and provides a denial-of-service

attack on all users simultaneously. Those designs also do not scale

over time because their message storage grows with each message

sent. For details on these issues, see Appendix A.

8 Conclusion

TEEMS is the first MPCS that targets metadata-protected messaging

and supports the four fundamental properties of (i) low latency, (ii)

high throughput, (iii) horizontal scalability, and (iv) asynchronicity

required for any messaging service to be deployed in practice. In

comparison to prior work, TEEMS presents a 18× improvement

in latency and throughput, requires fewer servers for scaling, can

scale to 100M users with a 1 s epoch time, and affords more desir-

able properties. We hope that TEEMS brings metadata-protected

messaging closer to practical mass adoption.

Acknowledgments

This work was supported by the Office of Naval Research. We

thank the Ontario Graduate Scholarships program, NSERC (CRDPJ-

534381 and RGPIN-2023-03260), and the Royal Bank of Canada for

supporting this work. This research was undertaken, in part, thanks

to funding from the Canada Research Chairs program, award CRC-

2018-00135. This work benefited from the use of the CrySP RIPPLE

Facility at the University of Waterloo.

References

[1] Ittai Abraham, Benny Pinkas, and Avishay Yanai. 2020. Blinder – Scalable,

Robust Anonymous Committed Broadcast. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[2] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas Zacharias.

2017. MCMix: Anonymous Messaging via Secure Multiparty Computation. In

26th USENIX Security Symposium.

[3] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata.

2013. Innovative Technology for CPU Based Attestation and Sealing.

https://software.intel.com/content/www/us/en/develop/articles/innovative-

technology-for-cpu-based-attestation-and-sealing.html. Accessed August 2024.

[4] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with Com-

pressed Queries and Amortized Query Processing. In 2018 IEEE Symposium on
Security and Privacy (S&P).

[5] Sebastian Angel, David Lazar, and Ioanna Tzialla. 2018. What’s a Little Leakage

Between Friends?. In Proceedings of the 2018 Workshop on Privacy in the Electronic
Society.

[6] Sebastian Angel and Srinath Setty. 2016. Unobservable Communication Over

Fully Untrusted Infrastructure. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI).

[7] Gilad Asharov, TH Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine

Shi. 2020. Bucket Oblivious Sort: An Extremely Simple Oblivious Sort. In Sympo-
sium on Simplicity in Algorithms (SOSA).

[8] Ludovic Barman, Moshe Kol, David Lazar, Yossi Gilad, and Nickolai Zeldovich.

2022. Groove: Flexible Metadata-Private Messaging. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI).

[9] Kenneth E Batcher. 1968. Sorting networks and their applications. In Proceedings
of American Federation of Information Processing Societies (AFIPS).

[10] BBC News. 2021. Putin critic Navalny jailed in Russia despite protests. https:

//www.bbc.com/news/world-europe-55910974. Accessed August 2024.

[11] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-

nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard

Seefeld. 2017. Prochlo: Strong Privacy for Analytics in the Crowd. In Symposium
on Operating Systems Principles (SOSP).

[12] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan

Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache

Attacks Are Practical. In USENIX Workshop on Offensive Technologies (WOOT).
[13] David Chaum. 1988. The Dining Cryptographers Problem: Unconditional Sender

and Recipient Untraceability. Journal of Cryptology (1988).

[14] David Chaum. 2003. Untraceable Electronic mail, Return Addresses and Digital

Pseudonyms. In Secure Electronic Voting.
[15] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna Krasnova, Joeri

De Ruiter, and Alan T Sherman. 2017. cMix: Mixing with Minimal Real-Time

Asymmetric Cryptographic Operations. In International Conference on Applied
Cryptography and Network Security (ACNS).

[16] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and

Ten H. Lai. 2019. SgxPectre: Stealing Intel Secrets from SGX Enclaves Via Specu-

lative Execution. In IEEE European Symposium on Security and Privacy (EuroS&P).
https://doi.org/10.1109/EuroSP.2019.00020

[17] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald, and

Flavio D. Garcia. 2021. VoltPillager: Hardware-based fault injection attacks

against Intel SGX Enclaves using the SVID voltage scaling interface. In 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association. https:

//www.usenix.org/conference/usenixsecurity21/presentation/chen-zitai

[18] Raymond Cheng, William Scott, Elisaweta Masserova, Irene Zhang, Vipul Goyal,

Thomas Anderson, Arvind Krishnamurthy, and Bryan Parno. 2020. Talek: Private

Group Messaging with Hidden Access Patterns. In Annual Computer Security
Applications Conference (ACSAC).

[19] Henry Corrigan-Gibbs, Dan Boneh, andDavidMazières. 2015. Riposte: AnAnony-

mous Messaging System Handling Millions of Users. In 2015 IEEE Symposium on
Security and Privacy (S&P).

[20] Henry Corrigan-Gibbs and Bryan Ford. 2010. Dissent: Accountable Anonymous

Group Messaging. In Proceedings of the 17th ACM conference on Computer and
Communications Security (CCS). ACM.

[21] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford. 2013. Proac-

tively Accountable Anonymous Messaging in Verdict. In 22th USENIX Security
Symposium.

[22] Hung Dang, Tien Tuan Anh Dinh, Ee-Chien Chang, and Beng Chin Ooi. 2017.

Privacy-Preserving Computation with Trusted Computing via Scramble-then-

Compute. Proceedings on Privacy Enhancing Technologies (PoPETs) (2017).
[23] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Natacha Crooks, and

Raluca Ada Popa. 2021. Snoopy: Surpassing the Scalability Bottleneck of Obliv-

ious Storage. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (SOSP).

[24] Deutsche Welle. 2019. Iran defends execution of gay people. https://www.

dw.com/en/iran-defends-execution-of-gay-people/a-49144899. Accessed August

2024.

[25] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-

Generation Onion Router. In USENIX Security Symposium.

[26] Saba Eskandarian and Dan Boneh. 2022. Clarion: Anonymous Communication

from Multiparty Shuffling Protocols. In 29th Network and Distributed System
Security Symposium (NDSS).

[27] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh. 2021.

Express: Lowering the Cost of Metadata-hiding Communication with Crypto-

graphic Privacy. In 30th USENIX Security Symposium.

[28] Stephen Farrell and Hannes Tschofenig. 2014. Pervasive Monitoring Is an Attack.

RFC 7258, https://www.rfc-editor.org/rfc/rfc7258.txt.

[29] Kyle Fredrickson, Ioannis Demertzis, James Hughes, and Darrell Long. 2024.

Sparta: Practical Anonymity with Long-Term Resistance to Traffic Analysis. In

2025 IEEE Symposium on Security and Privacy (SP).
[30] Kyle Fredrickson, Ioannis Demertzis, James Hughes, and Darrell Long. 2024.

Sparta: Practical Anonymity with Long-Term Resistance to Traffic Analysis.

https://github.com/ucsc-anonymity/sparta-experiments. Software artifact.

[31] The Guardian. 2013. Bradley Manning: A sentence both unjust and un-

fair. https://www.theguardian.com/commentisfree/2013/aug/21/bradley-

manning-sentence-unjust. Accessed August 2024.

[32] Justin Hendrix, Caroline Sinders, Cooper Quintin, Leila Wagner, Tim Bernard,

and Ami Mehta. 2023. What is secure? Analysis of popular messaging apps. Tech
Policy Press (June 2023).

[33] Intel. 2012. Intel Trusted Execution Technology. https://www.intel.com/

content/dam/www/public/us/en/documents/white-papers/trusted-execution-

technology-security-paper.pdf. Accessed August 2024.

[34] Intel. 2018. Q3 2018 Speculative Execution Side Channel Update. https://www.

intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html. Ac-

cessed August 2024.

[35] Intel. 2019. Intel Processors Voltage Settings Modification Advisory. https://www.

intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html. Ac-

cessed August 2024.

13

https://software.intel.com/content/www/us/en/develop/articles/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://software.intel.com/content/www/us/en/develop/articles/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://www.bbc.com/news/world-europe-55910974
https://www.bbc.com/news/world-europe-55910974
https://doi.org/10.1109/EuroSP.2019.00020
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-zitai
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-zitai
https://www.dw.com/en/iran-defends-execution-of-gay-people/a-49144899
https://www.dw.com/en/iran-defends-execution-of-gay-people/a-49144899
https://www.rfc-editor.org/rfc/rfc7258.txt
https://github.com/ucsc-anonymity/sparta-experiments
https://www.theguardian.com/commentisfree/2013/aug/21/bradley-manning-sentence-unjust
https://www.theguardian.com/commentisfree/2013/aug/21/bradley-manning-sentence-unjust
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00289.html

Proceedings on Privacy Enhancing Technologies YYYY(X) Sajin Sasy, Aaron Johnson, and Ian Goldberg

[36] Intel. 2020. 2020.2 IPU - Intel RAPL Interface Advisory. https://www.intel.com/

content/www/us/en/security-center/advisory/intel-sa-00389.html. Accessed

August 2024.

[37] Peipei Jiang, QianWang, Jianhao Cheng, CongWang, Lei Xu, XinyuWang, Yihao

Wu, Xiaoyuan Li, and Kui Ren. 2023. Boomerang: Metadata-Private Messaging

under Hardware Trust. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23).

[38] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD Memory Encryp-

tion. https://www.amd.com/content/dam/amd/en/documents/epyc-business-

docs/white-papers/memory-encryption-white-paper.pdf. Accessed August

2024.

[39] Christiane Kuhn, Martin Beck, Stefan Schiffner, Eduard Jorswieck, and Thorsten

Strufe. 2019. On Privacy Notions in Anonymous Communication. Proceedings on
Privacy Enhancing Technologies (PoPETs) 2 (2019).

[40] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford. 2017.

Atom: Horizontally Scaling Strong Anonymity. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles (SOSP).

[41] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. 2016. Riffle. Pro-
ceedings on Privacy Enhancing Technologies (PoPETs) (2016).

[42] Albert Kwon, David Lu, and Srinivas Devadas. 2020. XRD: Scalable Messaging

System with Cryptographic Privacy. In Proceedings of the 17th Usenix Conference
on Networked Systems Design and Implementation (NSDI).

[43] Simon Langowski, Sacha Servan-Schreiber, and Srinivas Devadas. 2023. Trellis:

Robust and Scalable Metadata-private Anonymous Broadcast. In Network and
Distributed System Security Symposium (NDSS).

[44] David Lazar, Yossi Gilad, and Nickolai Zeldovich. 2018. Karaoke: Distributed Pri-

vate Messaging Immune to Passive Traffic Analysis. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI).

[45] David Lazar, Yossi Gilad, and Nickolai Zeldovich. 2019. Yodel: Strong Metadata

Security for Voice Calls. In ACM Symposium on Operating Systems Principles
(SOSP).

[46] David Lazar and Nickolai Zeldovich. 2016. Alpenhorn: Bootstrapping Secure

Communication Without Leaking Metadata. In 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI).

[47] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia-Che Tsai, and Raluca Ada Popa.

2020. An Off-Chip Attack on Hardware Enclaves via the Memory Bus. In USENIX
Security Symposium.

[48] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus

Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves with

Branch Shadowing. In USENIX Security Symposium.

[49] Tom Leighton. 1984. Tight bounds on the Complexity of Parallel Sorting. In

Proceedings of the sixteenth annual ACM Symposium on Theory of Computing.
[50] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon,

Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based power

side-channel attacks on x86. In 2021 IEEE Symposium on Security and Privacy
(S&P).

[51] Donghang Lu and Aniket Kate. 2023. RPM: Robust Anonymity at Scale.

[52] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket

Kate, and Andrew Miller. 2019. HoneyBadgerMPC and AsynchroMix: Practical

Asynchronous MPC and Its Application to Anonymous Communication. In

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[53] PrateekMittal andNikita Borisov. 2009. ShadowWalker: Peer-to-peer Anonymous

Communication using Redundant Structured Topologies. In 16th ACM Conference
on Computer and Communications Security (CCS).

[54] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar.

2020. CopyCat: Controlled Instruction-Level Attacks on Enclaves. In USENIX
Security Symposium.

[55] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and

Frank Piessens. 2020. Plundervolt: Software-based Fault Injection Attacks Against

Intel SGX. In IEEE Symposium on Security and Privacy (S&P).
[56] Arjun Nambiar and Matthew Wright. 2006. Salsa: A Structured Approach to

Large-Scale Anonymity. In Proceedings of the 13th ACM conference on Computer
and Communications Security (CCS).

[57] Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas. 2022. Spectrum:

High-Bandwidth Anonymous Broadcast with Malicious Security. In Proceedings
of the 19th USENIX Conference on Networked Systems Design and Implementation
(NSDI).

[58] Nicholas Ngai, Ioannis Demertzis, Javad Ghareh Chamani, and Dimitrios Pa-

padopoulos. 2024. Distributed & Scalable Oblivious Sorting and Shuffling. In

2024 IEEE Symposium on Security and Privacy (S&P).
[59] NPR. 2021. Tech workers recount the cost of speaking out, as tensions rise inside

companies. https://www.npr.org/2021/10/21/1048038154/fired-apple-facebook-

netflix-google-workers. Accessed August 2024.

[60] NYR Daily. 2014. We Kill People Based on Metadata. https://www.nybooks.com/

daily/2014/05/10/we-kill-people-based-metadata/. Accessed August 2024.

[61] Andriy Panchenko, Stefan Richter, and Arne Rache. 2009. NISAN: Network

Information Service for Anonymization Networks. In 16th ACM Conference on

Computer and Communications Security (CCS).
[62] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George

Danezis. 2017. The Loopix Anonymity System. In 26th USENIX Security Sympo-
sium.

[63] Marc Rennhard and Bernhard Plattner. 2002. Introducing MorphMix: peer-to-

peer based anonymous Internet usage with collusion detection. In Proceedings of
the 2002 ACM workshop on Privacy in the Electronic Society (WPES).

[64] Reuters. 2018. UN Experts says Egypt systematically targets rights ac-

tivists. https://www.reuters.com/article/us-egypt-rights/u-n-experts-says-

egypt-systematically-targets-rights-activists-idUSKCN1M82EB/. Accessed Au-

gust 2024.

[65] Len Sassaman, Bram Cohen, and Nick Mathewson. 2005. The Pynchon Gate: A

Secure Method of Pseudonymous Mail Retrieval. In Proceedings of the 2005 ACM
Workshop on Privacy in the Electronic Society (WPES).

[66] Sajin Sasy and Ian Goldberg. 2024. SoK: Metadata-Protecting Communication

Systems. Proceedings on Privacy Enhancing Technologies (PoPETs) (2024).
[67] Sajin Sasy, Aaron Johnson, and Ian Goldberg. 2022. Fast Fully Oblivious Com-

paction and Shuffling. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (CCS).

[68] Sajin Sasy, Aaron Johnson, and Ian Goldberg. 2023. Fully Oblivious Algorithms.

https://crysp.uwaterloo.ca/software/obliv/. Software artifact.

[69] Sajin Sasy, Aaron Johnson, and Ian Goldberg. 2023. Waks-On/Waks-Off: Fast

Oblivious Offline/Online Shuffling and Sorting with Waksman Networks. In

Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[70] Sajin Sasy and Olga Ohrimenko. 2019. Oblivious Sampling Algorithms for Private

Data Analysis. In Advances in Neural Information Processing Systems (NeurIPS).
[71] Florian Sieck, Zhiyuan Zhang, Sebastian Berndt, Chitchanok Chuengsatiansup,

Thomas Eisenbarth, and Yuval Yarom. 2023. TeeJam: Sub-Cache-Line Leakages

Strike Back. IACR Transactions on Cryptographic Hardware and Embedded Systems
(CHES) 2024, 1 (2023).

[72] Signal. 2017. Private Contact Discovery for Signal. https://signal.org/blog/private-

contact-discovery/. Accessed August 2024.

[73] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich.

2017. Stadium: A Distributed Metadata-Private Messaging System. In Proceedings
of the 26th Symposium on Operating Systems Principles (SOSP).

[74] Adithya Vadapalli, Kyle Storrier, and Ryan Henry. 2022. Sabre: Sender-

Anonymous Messaging with Fast Audits. In IEEE Symposium on Security and
Privacy (S&P) .

[75] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.

2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient

Out-of-Order Execution. In USENIX Security Symposium.

[76] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul

Strackx. 2017. Telling Your Secrets without Page Faults: Stealthy Page Table-

Based Attacks on Enclaved Execution. In USENIX Security Symposium.

[77] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. 2015.

Vuvuzela: Scalable Private Messaging Resistant to Traffic Analysis. In Proceedings
of the 25th Symposium on Operating Systems Principles. ACM.

[78] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel

Attacks: Deterministic Side Channels for Untrusted Operating Systems. In IEEE
Symposium on Security and Privacy (S&P).

[79] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E

Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed

Analytics Platform. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI).

A Comparison to Sparta

The Sparta system [29] provides three different designs: Sparta-

LL (for low latency), Sparta-SB (a sorting-based design for high

throughput), and Sparta-D (designed to scale to larger numbers

of users). Sparta is similar in several ways to TEEMS. It also uses

TEEs, aims to provide resistance to traffic analysis, and provides

low-latency asynchronous messaging.

However, Sparta has several significant deficiencies that TEEMS

avoids: (1) it reveals sending behavior and is thus susceptible to

traffic analysis, (2) it shares limited storage resources across users

and thereby leaks information about receiving behavior, (3) it re-

quires a single server to perform computation and communication

over all clients and is thus non-scalable, and (4) the system allows

malicious users to perform denial-of-service on other users. We

14

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.npr.org/2021/10/21/1048038154/fired-apple-facebook-netflix-google-workers
https://www.npr.org/2021/10/21/1048038154/fired-apple-facebook-netflix-google-workers
https://www.nybooks.com/daily/2014/05/10/we-kill-people-based-metadata/
https://www.nybooks.com/daily/2014/05/10/we-kill-people-based-metadata/
https://www.reuters.com/article/us-egypt-rights/u-n-experts-says-egypt-systematically-targets-rights-activists-idUSKCN1M82EB/
https://www.reuters.com/article/us-egypt-rights/u-n-experts-says-egypt-systematically-targets-rights-activists-idUSKCN1M82EB/
https://crysp.uwaterloo.ca/software/obliv/
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/

TEEMS: A Trusted Execution Environment based Metadata-protected Messaging System Proceedings on Privacy Enhancing Technologies YYYY(X)

discuss these problems in some detail and describe how TEEMS

avoids them.

A.1 Traffic Analysis Resistance

Sparta is explicitly designed to resist traffic analysis. Similar to

TEEMS, it hides which users receive messages (if any) by requiring

users to fetch messages (or dummies) on a schedule independent of

their true messaging behavior. However, Sparta does not provide

the same protection to sending behavior. In Sparta, a client connects

to the system and submits a “send” request if and only if the user

has a genuine message to send. Fredrickson et al. acknowledge this

leakage (which they denote as 𝑆𝑡 , indicating the set of users sending

a message at a given time 𝑡).

However, this leakage does not strongly resist traffic analysis, as

claimed. For example, a messaging pattern in which a pair of users

𝐴 and 𝐵 send messages to each other back and forth repeatedly

would be apparent in the leaked information, as a message sent by

𝐴 is repeatedly followed by a message sent by 𝐵, and a message

sent by 𝐵 is repeatedly followed by a message sent by 𝐴. Thus a

global passive adversary, which is in the threat model of Sparta,

could perform an attack similar to an intersection attack, looking

for statistically unlikely sequences of alternating message sending

by pairs of users.

TEEMS solves this problem by applying the same protections to

sending messages as to receiving messages. Users in TEEMS must

send messages (or dummies) on a schedule that is unrelated to their

actual sending behavior. This protection does come at a latency

and bandwidth cost, but those costs are already being paid on the

receiving action, and so including them during sending at most

doubles them.

A.2 Information Leakage via Shared Resources

Sparta uses variable-size mailboxes to avoid dropping messages.

However, this design fails to recognize that the storage of such

messages is ultimately limited in several ways: (1) the ORAM used

to store them (in Sparta-LL) has a size fixed at initialization, (2) the

TEE has a maximum amount of memory in its Enclave Page Cache,

and (3) the system has a maximum amount of storage. Whenever

the lowest of these limits is reached, the system cannot store any

additional messages. An adversary can detect that the capacity has

been reached by determining when messages between accounts it

controls begin to drop messages. Thus the system at capacity leaks

how many messages are being stored.

A malicious client can cause the system to reach capacity by

sending messages to its accounts but never fetching them. More-

over, because Sparta reveals how many genuine messages are sent,

leaking the number of stored messages reveals information about

the number of genuine messages that have been fetched, which the

system is supposed to hide. For example, if the adversary observes

that a message between its accounts is not delivered at one time

but a similar message is delivered at a later time, it can conclude

one of the fetches of an honest user between those times contained

a genuine message. In the worst case, there is one such honest

recipient, identifying them completely. Since Sparta does not hide

when users send messages, this leakage can allow a sender and

recipient to be linked, violating the primary privacy goal of Sparta.

Messages can also be dropped in TEEMS, but it avoids any result-

ing information leakage in each of its two channel types. First, in

the token channel, the number of senders for a recipient is limited

to 𝑓 , allowing the system to provide sufficient routing capacity

for each message. Messages may still be dropped due to fixed-size

mailboxes, but only due to existing messages to the same recipient

as the dropped messages and thus not leaking information about

messages to honest users. Second, in the ID channel, the case of

too many messages for a given recipient in a round is handled by

enforcing a similar per-recipient routing limit. Because the limit

of 𝑏 messages received is applied during routing to each recipient

independently, the dropped messages for a malicious receiver will

be dropped the same regardless of the current or past activity of

the other users. Similar to the token channel, any subsequent drop-

ping due to limited mailbox size is only due to existing messages,

and which messages for an honest receiver get dropped is only

observable to the honest user (and not to the adversary).

A.3 Scalability

Sparta-D is designed to scale to larger numbers of users. However,

it centralizes query processing at a single “queue maintainer” that

also maintains all of the user account information. In a given round,

the following operations are performed: (1) users send their queries

to the queue maintainer, (2) the queue maintainer sorts the queries

with per-user metadata, (3) the queries are batched and padded

and sent to submaps, (4) the submap responses are returned to the

queue maintainer, (5) the responses are shuffled together, and (6)

the users are sent their messages (including dummies as necessary).

The queue maintainer thus creates a significant bottleneck as

the numbers of users and queries grow. If there are 𝑛 users in the

system and𝑚 queries in a given round, the oblivious sort operation

(implemented with bitonic sort) requires roughly (𝑛 +𝑚) log2
2
(𝑛 +

𝑚)/4 compare-and-swap operations, each of which operates over

an item the size of a message (128 B in the Sparta experiments).

This computational cost becomes significant when the number of

users grows large, such as the tens of millions of users that Signal

currently has [32]. Moreover, the queue maintainer must receive

all queries and send all responses, which presents a significant

communication cost. For example, suppose the system had 128B

messages, 50 million users, each user received two messages in

a round (i.e., 𝑘𝑖 = 2), and all users fetched in a round (all users

should fetch frequently to avoid delay in receiving a message).

Then the queue maintainer would need to send 12.8 GB per round

just responding to users.

Another scalability issue, which affects both Sparta-D and Sparta-

SB, is that the data structures storing messages in both systems

constantly grow and at any time store the total number of messages

ever sent into the system. Messages in these systems are stored in a

simple vector𝑀 (Sparta-D divides this vector across its submaps).

In a given round, for each user 𝑢𝑖 , 𝑘𝑖 dummy messages are initially

added into𝑀 , where 𝑘𝑖 is a public parameter controlling how many

messages (real or dummy) 𝑢𝑖 will receive during a fetch operation.

For each user 𝑢𝑖 , the system ultimately only removes from𝑀 the 𝑘𝑖
messages that 𝑢𝑖 receives during the fetch operation. Therefore, the

size of𝑀 does not change as a result of fetch operations. However,

send operations simply add the new messages to𝑀 , and so the size

15

Proceedings on Privacy Enhancing Technologies YYYY(X) Sajin Sasy, Aaron Johnson, and Ian Goldberg

of 𝑀 at any point is the total number of messages ever sent into

the system (or, equivalently, the total number of send queries ever

performed by users).

This scalability issue is fatal to the sustained operation of Sparta-

SB and Sparta-D over time. Eventually, as the message vector 𝑀

grows, it will exceed the capacity of the system to store it. For

example, if there are 10 million users and they send an average of

10 messages a day (each stored in 128 B internally), then each month

the message store𝑀 will grow by an additional 389GB. Moreover,

as 𝑀 grows, the computational cost of processing queries grows

because it involves sorting𝑀 , and so the system runs increasingly

slowly over time.

TEEMS is designed to avoid such issues and provide true scala-

bility in the number of users and over time. TEEMS distributes all

parts of sending and receiving messages. In particular, no single

server must communicate with all users or process all messages

sent or received in a given round. The data structures in TEEMS

also maintain a constant size over time, given a fixed number of

users.

A.4 Denial of Service

All the Sparta designs also suffer from severe denial-of-service

attacks. Because mailboxes are allowed to vary in size, malicious

users can send messages between themselves but never fetch them

and thereby cause the system to reach its capacity to store messages.

At that point, no new messages can be sent into the system, and it

is rendered useless. Sparta describes no limit on the rate at which

messages are sent into the system, and so malicious users can

cause this to happen rapidly. Even if per-user sending limits were

instituted, an adversary could still quickly fill up the available

storage capacity by controlling many accounts.

Similarly, an adversary can perform a targeted denial-of-service

attack on a given user 𝑢𝑖 by sending many messages to 𝑢𝑖 . Users

fetch at most once a round, and a user 𝑢𝑖 retrieves 𝑘𝑖 messages in a

single fetch query. As a result, if the adversary sends more than 𝑘𝑖
messages to𝑢𝑖 every round,𝑢𝑖 ’s mailbox will continually grow, and

𝑢𝑖 will experience an increasing delay in retrieving its messages

from honest users. For example, if 𝑘𝑖 = 5 and a round occurs every

10 seconds, then by sending just 10 messages to 𝑢𝑖 per round for 24

hours, an adversary cause subsequent messages from honest users

to 𝑢𝑖 to take 24 hours to be delivered.

TEEMS avoids denial-of-service attacks entirely in the token

channel because routing and storage capacity is reserved for users

holding tokens. In the ID channel, a malicious user who obtains the

ID of a target user 𝑢𝑖 may cause messages to 𝑢𝑖 to be dropped by

simultaneously sending many messages to that user. However, such

an attack requires the adversary to obtain the long user ID, which

user may choose to share only with trusted contacts. Moreover,

malicious flooding in a given round can only cause message drops

in that round, and the priority mechanism causes the messages

from malicious accounts repeatedly performing the attack to be

steadily de-prioritized and thus dropped instead of messages from

accounts sending to 𝑢𝑖 at lower rates.

B MPCS Properties

Here we elaborate on the different properties we discussed in Sec-

tion 1 and also quantify the thresholds we set for the properties of

low latency and high throughput.

Low Latency: A MPCS for messaging needs to have an accept-

ablemessaging latency. Formessaging, the time to deliver amessage

should be (no worse than) about the time it takes to type a message.

We therefore consider 3 s to be an acceptable messaging latency.

Throughput: The number of messages the system can process

in a fixed time frame. We use messages per second as the unit, and

require a throughput of at minimum 100K messages per second to

be considered high throughput.

Horizontal Scalability: The system should be able to scale as

more users enter the system, by addingmore servers into the system,

while maintaining metadata protections and without partitioning

the anonymity set.

Asynchronicity: Users should be able to send messages to re-

ceivers that are not currently online, with such messages being

retrievable the next time the receiver connects to the system. Most

existing MPCS constructions assume a synchronous system, where

all users are online at all times.

Setup: Existing MPCS typically require some form of setup. In

particular, they require some form of out-of-band exchange, and in

most cases an additional dialing protocol is required to establish a

channel for actual conversations [2, 26, 37, 42, 44, 73, 77].

C Summary of Parameters and Notation

Table 2 lists the parameters used to configure an instance of TEEMS.

Each parameter is a number that is set system-wide at initialization

and is constant during system operation. Table 3 summarizes the

remaining notation used in the paper. These variables are just used

by the paper to describe the system and its operation.

Table 2: The parameters in TEEMS

Parameter Description

𝑏 The maximum number of ID-channel messages a

user can send or receive

𝑒 Friend request expiration period

𝑓 Maximum size of a user’s friend list

𝑔 Number of ingestion servers in a given channel

ℓ The length of a message

𝑚1 Max messages in a short-term mailbox

𝑚2 Max messages in a long-term mailbox

𝑟 Number of routing servers in a given channel

𝑠 Number of storage servers in a given channel

𝜙 Frequency of friend operations

D Oblivious Algorithm Details

Here we provide further details of key oblivious algorithms in

TEEMS.

16

TEEMS: A Trusted Execution Environment based Metadata-protected Messaging System Proceedings on Privacy Enhancing Technologies YYYY(X)

Table 3: Key notation used in this paper

Notation Description

𝑎 Fraction of users controlled by adversary

𝐴 An account server

𝐶 A client

𝑐𝐼 Number of client interactions this epoch at ingestion

server 𝐼

𝑑 The number of servers done sending inputs this round

𝐹 A friend request

𝐺 A friend response

ℎ𝑅 Fraction of users sending to accounts assigned to S𝑅

I The set of ingestion servers in a given channel

𝐼
𝑖

The 𝑖th ingestion server in a given channel

I
𝑅

The set of ingestion servers in a given channel that

forward messages to routing server 𝑅

𝐼𝑢 The ingestion server assigned to user ID 𝑢 in a given

channel

𝐾 The global symmetric key

𝑀 A list of messages

Notation Description

M A message

𝑛 Total number of users in the system

R The set of routing servers in a given channel

𝑅
𝑖

The 𝑖th routing server in a given channel

S The set of storage servers in a given channel

𝑆
𝑖

The 𝑖th storage server in a given channel

S
𝑅

The set of storage servers in a given channel that rout-

ing server 𝑅 forwards messages to

𝑆𝑢 The storage server in a given channel assigned to user

ID 𝑢

𝑡 The MAC tag in a long user ID

𝑢, 𝑣 User IDs

𝜁 A nonce

𝜂 Current epoch

𝜇 Length of MAC tag in long user ID

𝜋 Boolean indicating if the channel is token

𝜌 Current round

𝜏 Length of a token

D.1 TokenColumnRoute

In Round 2, dummymessages are appended to achieve𝑦 = ⌊𝑓 ⌈𝑛/𝑠 ⌉/𝑟 ⌋+
𝑟 total messages destined for each of the 𝑠 storage servers. The num-

ber of messages 𝑥𝑖 held by routing server𝑅𝑖 in this round are known

given the (adversarially observable) number of messages received

from clients by each ingestion server. However, the number of those

messages that are both real and destined for a given storage server

are hidden, and the algorithm must be oblivious to it.

To add the dummy messages obliviously, therefore, 𝑅
𝑖
first per-

forms a linear scan of the first 𝑥𝑖 messages to obtain a count of the

number of messages destined for each storage server. This count

can be maintained in a list 𝐿 of 𝑠 numbers which is itself linearly

scanned and oblivously updated for each of the 𝑥𝑖 entries. Next,

𝑠𝑦 − 𝑥𝑖 dummy messages are appended to the message list 𝑀 . Fi-

nally, via a linear scan through those appended dummy messages,

they are assigned dummy recipients such that 𝑦 total messages are

destined for each storage server. At a given dummy message, this

assignment is made by a linear scan through 𝐿 and an oblivious test

for the first non-zero entry, followed by an oblivious decrement of

that entry and an update of the next dummy recipient to assign.

Note that in large deployments where 𝑠 is large, the data structure

𝐿 could instead be implemented as an ORAM to achieve 𝑂 (log 𝑠)
performance for each update or lookup operation in 𝐿.

D.2 IDColumnRoute

In Round 4, the lowest-priority messages to a given user are con-

verted to dummy messages if the total to that user exceed 𝑏. To

accomplish this, routing server 𝑅
𝑖
stores and updates the state

𝑡 = 𝑣 ∥ 𝑐 containing a user ID 𝑣 and a count 𝑐 , initialized as the

value 𝑡 received from 𝑅
𝑖+1. 𝑅𝑖 performs a linear scan of 𝑀 [𝑥 ..𝑦]

in reverse order, obliviously updating 𝑡 with a new user ID if the

current recipient differs from 𝑣 , obliviously incrementing the count

𝑐 or setting it to one if 𝑣 has changed, and obliviously converting

the current message to a dummy message if 𝑐 > 𝑏.

D.3 Storage

In a given epoch, the storage server appends messages to the short-

term mailboxes of the users. The same number of messages is

appended to each short-term mailbox, where some may be dummy

messages. To perform this append, the storage server 𝑆
𝑖
first sorts

the messages by recipient ID. Note that this positions all real mes-

sages before all dummy messages. Then 𝑆
𝑖
performs a linear scan

of the messages to create the position list 𝐿 used for expansion (i.e.,

reverse compaction). To create 𝐿, a count 𝑐 is maintained during

the linear scan of𝑀 of the number of messages seen to recipient of

the current message being examined. Position 𝐿𝑗 is obliviously set

to be 𝐿𝑗−1 + 1 if the last recipient matches the current one, or to

𝐿𝑗−1+ 𝑓 −𝑐+1 (or 𝐿𝑗−1+𝑏−𝑐+1 for the ID channel) otherwise, with

𝐿1 = 1. 𝑐 is obliviously updated with each new message examined

either by incrementing it or setting it to one if the last recipient

differs from the current one.

E Security Proof

The game defining Communication Unobservability (CU) is given

in Figure 9. A system is said to satisfy Communication Unobserv-

ability, as given in Definition E.1, if its advantage in the CU game

is negligible.

Definition E.1. Messaging system S is Communication Unob-

servable if

���Pr [CU0,𝜆

S = 0

]
− Pr

[
CU1,𝜆

S = 0

] ��� is negligible in 𝜆 for
all polynomial-time adversaries.

Theorem 1, first stated in Section 5.2, proves that each channel

in TEEMS is Communication Unobservable.

Theorem 1. The token and ID channels in TEEMS are each CU.

Proof. There are two distributions of the adversary’s obser-

vations, one for each possible value of the challenge bit 𝛽 of the

security game (Figure 9). We argue that the two distributions of

17

Proceedings on Privacy Enhancing Technologies YYYY(X) Sajin Sasy, Aaron Johnson, and Ian Goldberg

The parameters of the game are:

• A: A polynomial-time adversary

• C: The challenger
• 𝐸: The number of epochs

• 𝑛: The number of users

• S: The messaging system

• 𝛽 : The challenge bit

• 𝜆: The security parameter

A and C interactively execute the game:

(1) A sends C the following:

• For each client, a subset of epochs during which the client

will interact with S
• For each client, for each epoch it interacts with S, a set of
messages to send during that epoch, and their recipients.

• A subset of users who are malicious

• A challenge user, epoch, and message. The user must be

honest, the epoch must be one during which the user

interacts with S, the message must be one of the messages

the user sends in that epoch, and the message must be to

an honest recipient.

(2) If 𝛽 = 0, C removes the challengemessage from themessages

to be sent by users.

(3) C executes S for 𝐸 epochs.

(4) C sends to A the following:

• The messages received by malicious users

• Communication traces between all parties

• Execution traces of all servers, each of which is a sequence

of instructions and the memory locations read and written

by those instructions

(5) A outputs its guess at 𝛽 .

Figure 9: CU𝛽,𝜆S : Communication Unobservability game

observables are indistinguishable. The observables are the com-

munication traces between all parties, the execution traces of all

servers, and the messages received by malicious users.

We first make the standard argument that all communications

are encrypted and thus obtain confidentiality with respect to the

adversary who does not possess the secret keys. Therefore we

implicitly move to games in which only the lengths of the messages

between servers and between honest clients and servers are sent to

the adversary.

For the clients, the epochs in which they interact, while adver-

sarially chosen, are the same regardless of 𝛽 . The size of the client

messages while sending messages is constant regardless of the num-

ber of real messages sent or received. When receiving messages, the

size of the messages depends only on the client interaction history,

as the size of the short-term mailbox is proportional to the length

of time since the last interaction and the constant-sized long-term

mailbox is sent depending on the time of the last interaction. There-

fore the clients’ communication traces are identical regardless of

𝛽 .

For the ingestion servers, the lengths of its messages to routing

servers depend only on the number of client interactions (and not on

the number of real messages they contain). Therefore, the lengths of

those messages do not depend on 𝛽 . The algorithms implementing

the ingestion-server operations (e.g., to validate tokens or MAC

tags) are oblivious, which in this context means that their sequences

of instructions and memory-location accesses do not depend on

more than the size of their inputs. The lengths of those inputs

depend only on the number of clients that have interacted, which

does not depend on 𝛽 , and therefore the execution sequences are

the same in the two distributions.

For the routing servers, we consider the token and ID channel

separately.

For the token channel, we consider each round of TokenColumn-

Route. A routing server in Round 1 sorts the received messages

(real and dummy) and then sends them round-robin to the other

routing servers. The sorting is performed obliviously, with execu-

tion traces (i.e., instruction and memory-location access sequences)

depending only on the number of received messages. That number

has already been argued to be independent of 𝛽 because it depends

only on the number of client interactions, making the execution

traces similarly independent. The number of messages sent to the

other servers also depends only on the number received from clients

in this epoch and is thus independent of 𝛽 .

In Round 2 of TokenColumnRoute, a routing server appends

messages to those it received in the previous round, shuffles them,

and then sends them to the routing server forwarding to the storage

server of each message. The number of messages appended depends

only on the number received, which has already been argued to

be independent of 𝛽 as it only depends on the number of client

interactions in this epoch. That the desired number of messages

for a given storage server can be reached by appending additional

messages follows from the following facts: (1) tokens limit the

number ofmessages in the entire system intended for any user to 𝑓 𝑛;

(2) there are at most ⌊𝑓 ⌈𝑛/𝑠 ⌉ users withmailboxes at a given storage

server due to the even division of users across storage servers; and

(3) after Round 1 the routing server has at most ⌊𝑓 ⌈𝑛/𝑠 ⌉/𝑟 ⌋ + 𝑟
messages destined for any given storage server, as it would have

at most ⌊𝑓 ⌈𝑛/𝑠 ⌉/𝑟 ⌋ messages if the messages were globally round-

robin scattered but each routing server locally scatters the messages,

adding at most one excess messages from each of the 𝑟 routing

servers. The appending process is oblivious in that it only depends

on the number of appended messages, and thus its execution trace

is independent of 𝛽 . Similarly, the shuffling process is oblivious and

only depends on the number of messages, which after appending is

constant, and so the execution traces are independent of 𝛽 . Finally,

the number of messages destined for each storage server is the

same, as a result of the appending process, and those messages are

in a uniformly random order after the shuffling process. Therefore,

the distribution of the execution and communication traces is the

same regardless of 𝛽 , where each routing server ultimately receives

the same number of messages but in a random order.

In Round 3 of TokenColumnRoute, the number of dummy

messages marked for deletion is the same for each of the storage

servers the messages are destined for, and so the number remaining

for each storage server is the same regardless of 𝛽 . The subsequent

shuffle depends only on this number of undeleted messages, and

the execution trace is thus independent of 𝛽 because an oblivious al-

gorithm is used that depends only that number. Finally, forwarding

18

TEEMS: A Trusted Execution Environment based Metadata-protected Messaging System Proceedings on Privacy Enhancing Technologies YYYY(X)

messages to the storage servers yields execution and communica-

tion traces independent of 𝛽 because the same number of messages

is sent to each storage server, albeit in a uniformly random order.

Now turning our attention to IDColumnRoute, Round 1 is the

same as in TokenColumnRoute except the messages are sorted

using priorities as well. Therefore, for the same reasons already

given, the communication and execution traces of Round 1 are

independent of 𝛽 .

In Round 2 of IDColumnRoute, the number of messages sent to

each other routing server is a deterministic function of the number

of messages received in Round 1, making it also independent of 𝛽 .

The sorting is done obliviously, where the execution trace depends

only on the number of messages being sorted, and so the execution

trace is also independent of 𝛽 .

In Round 3 of IDColumnRoute, the number of messages sent

is a deterministic function of the number received in Round 2 and

is therefore independent of 𝛽 . The sorting is oblivious, depending

only on the number of messages received, and therefore produces

execution traces independent of 𝛽 . The computation of the state is

also performed obliviously depending only on 𝑏 and thus produces

execution traces independent of 𝛽 .

In Rounds 4 and 5 of IDColumnRoute, the appending and sort-

ing algorithms are oblivious given the number of messages re-

ceived previously, and so their execution traces do not depend on 𝛽 .

The dummy conversion is performed via an oblivious linear scan

that similarly only depends on the number of messages received,

making the execution traces also independent of 𝛽 . The oblivious

compaction depends only on the number of messages being com-

pacted, which does not depend on 𝛽 , and so their execution traces

are independent of 𝛽 . The subsequent execution of two rounds

of TokenColumnRoute produces communication and execution

traces independent of 𝛽 , using the arguments already given for

those rounds of TokenColumnRoute, given that they operate on

a number of messages that does not depend on 𝛽 .

For the storage servers, the number ofmessages (real and dummy)

they each receive from the routing servers is 𝑓 (or 𝑏 for the ID chan-

nel) times the number of mailboxes they store. That number is

the same regardless of 𝛽 , and so the size of that communication is

the same. The algorithm to append to the short-term mailbox is

oblivious, and its execution traces depend only on the number of

mailboxes and the number of message received. Both of those are

independent of 𝛽 , making the execution traces also independent

of 𝛽 . The algorithm to transfer messages to the long-term mailbox

is executed based on how frequently the client interacts, which

does not depend on 𝛽 . Moreover, it is oblivious in that its execution

trace depends only on the size of the short-term and long-term

mailboxes. The size of the short-term mailbox depends only on the

client interaction history, and the long-term mailbox has constant

size. Therefore, the execution traces of the mailbox transfers are

independent of 𝛽 . Furthermore, when, during a client interaction,

the short-term mailbox is sent and overwritten, doing so is oblivi-

ous process that depends only on the mailbox size. Similarly, the

long-term mailbox is sent at times that only depend on the client

interaction history, and overwriting it is an oblivious operation

depending only on its size, which is constant. Therefore, the exe-

cution traces of sending mailboxes to clients are independent of

𝛽 .

Table 4: Computation per epoch for a client or server

Entity Runtime

𝐶 𝑂 (ℓ)
𝐼 𝑂 (ℓ𝑐𝐼)
𝑅 (offline) 𝑂 ((𝑛/𝑟 + 𝑟 𝑠) log3 (𝑛/𝑟 + 𝑟 𝑠))
𝑅 (online) 𝑂 (ℓ (𝑛/𝑟 + 𝑟 𝑠) log(𝑛/𝑟 + 𝑟 𝑠))
𝑆 (offline) 𝑂 ((𝑛/𝑠) log3 (𝑛/𝑠))
𝑆 (online) 𝑂 (ℓ (𝑛/𝑠) log(𝑛/𝑠))

Table 5: Maximum communication per epoch per client or

server

Entity Bytes received Bytes sent

𝐶 ℓ (𝑓 + 𝑏) 2ℓ + 𝜇 + 𝜏
𝐼 tkn 𝑐𝐼 (ℓ + 𝜏) 𝑐𝐼 ℓ

𝐼 id 𝑐𝐼 (ℓ + 𝜇) 𝑐𝐼 ℓ

𝑅tkn

(𝑐I
𝑅
ℓ)+

ℓ𝑠 (⌊ 𝑓 ⌈𝑛/𝑠 ⌉/𝑟 ⌋ + 𝑟)
ℓ𝑠 (⌊ 𝑓 ⌈𝑛/𝑠 ⌉/𝑟 ⌋ + 𝑟)+
ℓ (𝑠/𝑟) 𝑓 ⌈𝑛/𝑠 ⌉

𝑅id

ℓ (𝑐I
𝑅
)+

ℓ (∑𝑖 ⌈𝑐I
𝑅
𝑖

/𝑟 ⌉)+
ℓ (⌈𝑛/𝑟 ⌉ + 𝑟)+
ℓ (𝑟 − 1)2+
ℓ (⌈𝑛/𝑟 ⌉ + 𝑟)+
ℓ𝑠 (⌊𝑏 ⌈𝑛/𝑠 ⌉/𝑟 ⌋ + 𝑟)

ℓ (𝑐I
𝑅
)+

ℓ (∑𝑖 ⌈𝑐I
𝑅
𝑖

/𝑟 ⌉)+
ℓ (𝑟 − 1)2+
ℓ (⌈𝑛/𝑟 ⌉ + 𝑟)+
ℓ𝑠 (⌊𝑏 ⌈𝑛/𝑠 ⌉/𝑟 ⌋ + 𝑟)+
ℓ (𝑏 ⌈𝑛/𝑠 ⌉) (𝑠/𝑟)

𝑆 tkn ℓ 𝑓 ⌈𝑛/𝑠 ⌉ 𝑐𝑆 𝑓 ℓ

𝑆 id ℓ𝑏 ⌈𝑛/𝑠 ⌉ 𝑐𝑆𝑏ℓ

Finally, we consider the messages that a malicious user receives

in a given interaction. None of those messages is the challenge mes-

sage because it must be to an honest user. In the token channel, all

messages sent to the malicious user get routed to the storage server.

Therefore, because the challenge message is not to the malicious

user, the state of the malicious user’s mailbox, which depends only

on the messages it gets routed and the interactions of the mali-

cious client, is independent of 𝛽 , and so are the messages delivered

from it to the malicious user. A similar argument applies to the ID

channel, except that messages to a malicious user may be dropped

during routing. However, in IDColumnRoute a message is only

dropped in favor of another message to the same user with the

same or higher priority. Because the challenge message is to an

honest user, its presence does not change the messages dropped

for the malicious users, and therefore the messages received by the

malicious users are the same regardless of 𝛽 . □

F Analytical Efficiency

Let 𝐶 be a client, and let 𝑐𝑥 be the number of clients that have

interacted with server(s) 𝑥 in a given epoch. Let 𝜇 be the length of

a MAC tag used in long user IDs, and let 𝜏 be the length of a token.

We analyze runtimes asymptotically in terms of the message length

and the numbers of users and servers. We use the runtimes of the

oblivious subroutines used in our implementation: for 𝑦 items of

length 𝑧, the runtime for oblivious compaction is 𝑂 (𝑧𝑦 log𝑦) [67],
and for oblivious shuffles and sorts it is 𝑂 (𝑧𝑦 log𝑦) online and

𝑂 (𝑦 log3 𝑦) offline [69].

19

Proceedings on Privacy Enhancing Technologies YYYY(X) Sajin Sasy, Aaron Johnson, and Ian Goldberg

Table 6: Experimental results of related work. Clarion, XRD, Karaoke, and Boomerang require setup in the form of a dialing

protocol. The experiment numbers below do not account for dialing. In Clarion, dialing incurs about the same overhead as

its communication protocol. The dialing protocol used by Boomerang and Karaoke [46] takes ≈16 s for 1 million users. XRD

requires dialing, but no existing dialing protocol fits the system. Dialing has to be run every few communication rounds before

any actual message data can be transmitted. Groove circumvents dialing by assuming shared secrets between clients. However,

prior to any communication Groove require a circuit setup process that takes ≈300 s for 1 million users. Gray entries are results

as reported in the related work, and black entries are results from experiments we ran on our server.

System

Experiment Reported

Clients Servers Msg size Latency Throughput

(Total cores) (bytes) (msgs/sec)

Clarion [26] 10
6

3 (48) 160 80 s 12.5 K

XRD [42] 10
6

200 (7200) 256 128 s 8 K

Karaoke [44] 10
6

100 (3600) 256 6 s 166 K

Groove [8] 2
20

100 (3200) 256 32.4 s 1.5M

Loopix [62] 3 × 10
4

5 (80) 224 1.9 s 16 K

SealPIR [4] 2.6 × 10
5

1 (16) 288 0.51 s 2

Sabre [74] 2
18

3 (48) 1000 0.05 s 20

Boomerang [37] 2
20

32 (256) 256 7.8 s 134 K

Sparta-SB [29] 2
20

1 (72) 128 25.89 s 41 K

TEEMS 2
20

64 (205) 256 0.98 s 2.14M

The runtimes of individual clients and servers per epoch are

given in Table 4. For clients, the runtime is linear in the message size

because for each channel they send and receive a fixed-size batch

of messages. For ingestion servers, we see that the runtime is linear

in the number of client interactions and the message length. For

routing servers, the costs are dominated by the message processing

in the Distribute round (i.e., token-channel Round 2 and ID-channel

Round 4), where there are 𝑂 (𝑛/(𝑠𝑟) + 𝑟) messages for each of the

𝑠 storage servers, and the most costly operation on them is the

oblivious shuffle. For storage servers, there are𝑂 (𝑛/𝑠) messages to

process, and that processing is dominated by an oblivious sort of

them. The offline operations are not on the messages themselves

(but just on message indices), and so the ℓ factor only appears in

the online runtimes.

The total communication of each type of server per epoch is

given in Table 5. Clients send and receive fixed-size batches of mes-

sages. In the token channel, tokens are included with the messages

from the clients, while in the ID channel, the MAC tags in the long

user IDs are included instead. Ingestion servers send and receive

a single message for each of their client interactions, and so their

load increases with the number of online clients rather than the

number of assigned clients.

In the token channel, communication is dominated by the Dis-

tribute round (Round 2), in which each server sends and receives

𝑂 (𝑛/𝑟 + 𝑠𝑟) messages, where the 𝑠𝑟 term is due to the 𝑟 messages

added for each storage server to ensure enough space to send mes-

sages to the appropriate routing server. A factor of 𝑓 also appears in

the communication for the last two rounds, as a user might receive

a message from each friend.

In the ID channel, total communication is also dominated by the

Distribute round (Round 5), as all servers must send the maximum

possible to each storage server. Before that round, no dummy mes-

sages are added. ID routing does involve three additional rounds

with communication, and the last two rounds of communication

include a factor of 𝑏 as each user might receive that many messages.

Storage servers send and receive𝑂 (𝑛/𝑠) messages because mail-

boxes are evenly distributed across storage servers.

G Latency and Throughput Comparisons

In Table 6, we revisit the systems presented in Table 1 and show

the sizes (numbers of clients, servers, and cores) and results (la-

tency and throughput) of experiments reported in those works.

We also include TEEMS to compare to those systems. We include

this comparison in an appendix because we did not re-run all the

comparator systems on common hardware. However, we can still

do order-of-magnitude comparisons of the latency and throughput

achievable by TEEMS and the other systems.

We see that Clarion and XRD yield latencies far too large for

our target application of interactive messaging. Karaoke’s and

Boomerang’s latencies are only slightly larger than one would

like, but their throughputs are each more than an order of mag-

nitude smaller than that of TEEMS. Loopix, SealPIR, and Sabre

have acceptable (and even impressive) latencies, but their through-

puts range from small (Loopix) to completely impractically tiny

(SealPIR, Sabre). All of this also completely ignores, as described in

the caption to Table 6, the additional cost of the dialing protocol

required by Clarion, Boomerang, Karaoke, and XRD, but not the

others, including TEEMS.

20

	Abstract
	1 Introduction
	2 Background
	2.1 Trusted Execution Environments
	2.2 MPCS

	3 Overview
	3.1 System Design and Goals
	3.2 Token and ID Channels
	3.3 Clients
	3.4 Servers

	4 Design Details
	4.1 User Identifiers
	4.2 Account Server
	4.3 Messages
	4.4 Clients
	4.5 Ingestion
	4.6 Routing
	4.7 Storage
	4.8 Friends

	5 Analytical Evaluation
	5.1 Efficiency
	5.2 Security

	6 Experimental Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Comparison to Sparta
	A.1 Traffic Analysis Resistance
	A.2 Information Leakage via Shared Resources
	A.3 Scalability
	A.4 Denial of Service

	B MPCS Properties
	C Summary of Parameters and Notation
	D Oblivious Algorithm Details
	D.1 TokenColumnRoute
	D.2 IDColumnRoute
	D.3 Storage

	E Security Proof
	F Analytical Efficiency
	G Latency and Throughput Comparisons

