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ABSTRACT
In regions of the world where censorship of the Internet is used to
limit access to information, monitor the activity of Internet users,
and quash dissent, anti-censorship proxies, or bridges, can offer a
connection to the open Internet beyond a censor’s area of influence.
Bridge distribution systems, built to publicly distribute large pools
of bridges to users in censored regions, face the inherent conflict of
providing bridges to unknown users when some of them may be
malicious. If not designed with care, bridge distribution systems can
be quickly overwhelmed by attacks from censors, undermining the
integrity of the system and the safety of users. It is therefore crucial
to prioritize protecting users when developing such systems.
In this paper, we present a new bridge distribution system, Lox.
Lox prioritizes protecting the privacy of users and their social
graphs and incorporates enumeration resistance mechanisms to
improve access to bridges and limit the malicious behaviour of
censors. We use an updated unlinkable multi-show anonymous
credential scheme, suitable for a single credential issuer and verifier,
to protect Lox bridge users and their social networks from being
identified by malicious actors. We formalize a trust level scheme
that is compatible with anonymous credentials and effectively limits
malicious behaviour while maintaining user anonymity. Our work
includes an open-sourced, Rust implementation of our Lox protocols
as well as an evaluation of their performance. With reasonable
performance and latency for the expected user base of our system,
we demonstrate Lox as a practical, social graph protective bridge
distribution system.
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1 INTRODUCTION
Internet censorship takes many forms to fit the capabilities and
motivations of the censor, from repressing self-expression, to con-
trolling the political landscape and information available to users
within the regions they control. Recent work demonstrates the
variability of Internet censorship employed around the world. In a
collaborative report by OutRight Action International, the Univer-
sity of Toronto’s Citizen Lab, and the Open Observatory of Network
Interference (OONI), Dalek et al. [8] analyze the methods employed
by censors across six regions (Indonesia, Malaysia, Russia, Iran,
Saudi Arabia and the United Arab Emirates) to censor LGBTIQ web-
sites and related content. In other work, Padmanabhan et al. [32]
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examine the evolving face of Internet shutdowns and censorship in
Burma (Myanmar) in the days preceding, during, and after the mili-
tary coup in February 2021. A report by OONI details the anomalies
they detected in Tor network connections in Russia [40] beginning
in December 2021, which indicated a sudden shift to widespread
blocking of the Tor anonymity network by many Russian ISPs in
the lead up to Russia’s invasion of Ukraine.

Anti-censorship tools aim to provide journalists, activists, and in-
dividuals frommarginalized groups with access to the free and open
Internet. The Tor [11] anonymity network allows users to anony-
mously browse the Internet and has proven to be an important tool
to evade Internet censorship and surveillance. Unfortunately, Tor’s
widespread popularity as a censorship circumvention tool makes
it an obvious target of blocking by censors [18, 20, 24, 40]. Where
access to Tor and the wider Internet is heavily censored, bridges, or
anti-censorship proxies, must be used to connect. The Tor Project’s
existing bridge distribution mechanism, BridgeDB [34], provides
adequate support for some users; for example, use of Tor bridges
in Russia rose sharply at the above December 2021 blockage, and
rose further in late February 2022 [35]. However, passive and ac-
tive detection techniques such as traffic flow analysis [2], Deep
Packet Inspection (DPI) [38], website fingerprinting [5], and ac-
tive probing, have been demonstrated in prior work to reveal Tor
bridges [14, 18, 38], making Tor inaccessible for the vast majority
of users in some regions [14, 24].

While there has been significant innovation in the development
of probe-resistant bridges [3, 4, 31, 36] and transports [10, 16, 19, 21,
39] that are effective at circumventing censors’ detection techniques,
the problem remains of how to distribute these bridges to untrusted
users that will not make them vulnerable to widespread blocking
by censors. Prior work on bridge distribution has addressed this
inherent conflict from several different angles.

Douglas et al. [13] devise the Salmon scheme, which uses a trust
level hierarchy to extend and limit privileges based on user be-
haviour within the system. Trust levels can be inherited through
being invited to the system by a highly trusted user as well as
accrued over time while bridges that a user knows of remain un-
blocked. While Salmon’s trust levels are intriguing, the Salmon
scheme’s use of Facebook to verify users and their tracking of the
recommendation graph fails to provide robust privacy guarantees
to users and makes the distribution server a prime target for an
adversary who desires information about bridge users and their
social network. In Salmon’s scheme, the use of a third party to au-
thenticate and verify users is critical to limiting the censor’s ability
to create multiple accounts which can be used to flood the system
with malicious new users, ensuring that genuine users are never
able to gain trust.

Conversely, Wang et al.’s rBridge [37] and Lovecruft and de
Valence’s Hyphae [27] both focus on the importance of privacy
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protection in bridge distribution and each present a system, dif-
fering in their anonymous credential scheme, that protects user
privacy and anonymity while disseminating bridges through a net-
work of trusted users with records of good behaviour. Hyphae
points out that because the bridge authority can act as both the
issuer and verifier of credentials, a much simpler and more effi-
cient anonymous credential scheme, Chase et al.’s keyed algebraic
MAC credentials [7], can be used in place of rBridge’s k-TAA [1]
credentials that require elliptic curve pairings. To limit censors’
sock-puppet accounts, these systems both imagine invite-only sys-
tems that are only available to users invited by trusted friends,
limiting accessibility to new, genuine users.

In this paper, we present Lox, a new bridge distribution system
that provides a framework for combining Salmon’s trust levels with
a formalized privacy protective reputation scheme, emphasizing
privacy of a user’s social graph. We follow the lead of Hyphae
to design our bridge distribution system with the use of Chase et
al.’s keyed algebraic MAC anonymous credentials. By addressing
known threats to existing systems and combining insights from
prior work, we create a system that limits malicious behaviour,
provides privacy protection to users and their social graphs, and is
open to all users. Our contributions can be summarized as follows:
• We design Lox, a new bridge distribution system that:
– resists bridge enumeration by formalizing a trust level
scheme that is compatible with anonymous creden-
tials

– provides privacy protection for users and their so-
cial graphs through the use of an unlinkable multi-show
anonymous credential scheme

– makes bridges available to untrusted users while lever-
aging users’ trust networks to provide trusted access
to users invited by a trusted user

• We evaluate the performance of Lox’s protocols with a
Rust implementation, specificallymeasuring the cost of Lox’s
privacy protection and demonstrating that Lox achieves rea-
sonable performance for small bridgepools (∼3600 bridges,
which is comparable to Tor’s current bridgepool)

2 BACKGROUND
2.1 Bridge Distribution Problem
The bridge distribution problem, in its simplest construction, fo-
cuses on distributing viable network bridges to honest users in the
presence of a censor that aspires to prevent bridge use. As explored
in previous work [13, 27, 30, 37], designing and implementing such
a system for practical use requires an understanding of how censors
operate in different regions. This includes the resources at a censor’s
disposal, the tools they are known to deploy and the known dangers
to individuals who are discovered using censorship circumvention
tools. In designing Lox, we prioritize safety and accessibility for
users under even the most severe conditions. In this section we
discuss features from prior work that we have incorporated into
Lox.

2.2 Bridge Availability
We consider bridge availability to refer to the ability of a given user
to obtain and use a bridge. In Lox, our design includes the following

considerations to provide bridge availability comparable to existing
systems.

2.2.1 Open While Defending Against Sock-Puppets. Sock-puppet
accounts, used to impersonate users in order to enumerate and
block bridges, are an ever-present problem in the bridge distribu-
tion space. Providing anonymity to users complicates many existing
approaches to curb this behaviour. Relying on third-party email
providers to verify users was demonstrated by Ling et al. [25] to
leave Tor’s BridgeDB vulnerable to censors able to make multiple
accounts. While there are no perfect solutions to preventing sock-
puppets in bridge distribution systems, prior work offers some sug-
gestions to dissuade or limit the number of sock-puppet accounts
that are able to access their systems.

rBridge and Hyphae are only open to trusted users and their
friends, making these systems inherently more robust against cen-
sors, at the cost of utility for users not well socially connected.
Sock-puppet accounts can still cause considerable damage if they
find paths into these systems. However, their reputation systems
limit the amount of damage a censor can do, forcing censors to
make a tradeoff between disrupting a relatively small number of
users immediately and keeping bridges open longer to enumerate
more bridges or invite more malicious users.

Taking a different approach, Salmon recommends only allowing
the registration of users with valid Facebook accounts, created
some number of years ago and with profile pictures showing the
user’s face. This makes account duplication more difficult than in
BridgeDB’s approach. Since Salmon relies on the ability to ban
users permanently, being able to trust some external body to verify
that a user is not a sock-puppet is critical to the functionality of the
Salmon design. Once granted entry, users are tracked as they move
through Salmon’s deterministic levels of trust to unlock different
privileges. Leaving aside privacy concerns about Facebook [22] and
the ease with which a state-level censor could create multiple fake
accounts, relying on any centralized body to verify a user’s identity,
whether social media, government agency or otherwise, introduces
challenges that can cause disproportionate harm to some users over
others and sow distrust among the most vulnerable users.

In Lox, we prioritize protection of the user’s social graph, opt-
ing for a more private and less restrictive means for allowing new,
untrusted users to join the system. To protect against sock-puppet
attacks, we incorporate features from prior work such as reputation
systems and bridge distribution by trusted friends, which we expect
would improve over BridgeDB. We also note that while Lox does
not depend on account validation, Lox’s design does not preclude a
valid account check prior to distributing open-entry tokens that,
unlike Salmon, could remain separate and unlinkable from future
interactions with Lox. Additionally, trusted users, joining by invita-
tion, can gain access to Lox without any need for proving access to
a valid third-party account.

2.2.2 Leveraging Trust Networks for Bridge Distribution. Distribut-
ing bridges by leveraging a user’s trust network has been proposed
as a means of gaining an advantage over a sophisticated censor
that has more resources than any genuine user, but has few honest
friends [27, 29, 37]. Invitations from trusted users give some means
of distinguishing between probable honest users and censors, mak-
ing the system more resistant to enumeration. In a system that is
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open to all users, the ability to make this distinction is even more
valuable. Bootstrapping the system with some number of trusted
users that are able to invite friends can allow for the number of
trusted users of the system to grow more quickly than would be
the case if trust levels alone were used. Additionally, ensuring that
the bridges distributed to trusted users are not distributed except
by trusted invitation reduces the likelihood that those bridges will
be impacted by censors.

One of the first schemes that looked at trust networks as a bridge
distribution channel was Proximax, introduced by McCoy et al. [29].
Proximax optimizes for system uptime by monitoring the user-
hours of highly trusted (registered) users and their invitees who
are connected in a tree-like structure. If malicious behaviour is de-
tected anywhere along the branch, the whole branch is considered
suspicious, damaging the reputation of all users in that branch and
curtailing their ability to distribute invitations.

Wang et al. [37] built on the Proximax scheme with rBridge,
which similarly leverages a user’s social network for bridge distri-
bution and as the primary contribution, adds privacy protection
for users and their social graph through the use of anonymous
credentials. rBridge makes several additional design changes to
Proximax’s trust distribution scheme to limit malicious behaviour
and increase the amount of time a bridge can be used before it is
blocked. Users join the rBridge system through invitations and ac-
crue credit by keeping their bridges unblocked. When presenting an
invitation to the bridge authority (that acts as the issuer and verifier
of credentials), users first receive their bridges through oblivious
transfer with the authority so that the authority does not learn
which bridges are being requested. The user then requests their
user credential, and can begin accruing credit. When one of the
user’s bridges is blocked, they can report it and accrue unclaimed
credit up until the blockage. If they have enough credit, they are
able to exchange the credit for a new bridge. This allows users to
build trust with good behaviour and avoid being locked out of the
system permanently. Highly trusted users can request invitation
tokens to invite their friends to the system but rBridge’s bridge
authority will only grant the request with a certain probability in
order to encourage users to hand out invitations sparingly, to only
their most trusted friends.

Lovecruft and de Valence’s Hyphae [27] leaves much of the
rBridge protocol intact while replacing the anonymous credential
scheme with keyed-verified algebraic MACs [7]. However, they
omit the initial oblivious transfer, having the authority issue bridge
tokens that users can immediately use to exchange for new bridges
anonymously. They also propose reducing the amount of time
required for a user to begin inviting friends to the system and
allowing users to use their accrued trust credits to exchange for
invitations much like they can exchange for new bridges if they are
blocked.

Both rBridge and Hyphae operate under the assumption of an
invite-only environment where the vast majority of users are not
malicious. This makes their systems much more robust against
censors, with invitations less likely to be distributed to malicious
users. However, the exclusivity of the system means that it can
only benefit a relatively small, already socially connected group. A
system that is open to all users must go further to limit malicious

behaviour of censors since a greater percentage of users acting
maliciously would quickly overwhelm these systems.

Douglas et al.’s Salmon [13] scheme also includes distributing
bridges through invitations from trusted users. As a user increases
their trust level, the bridges they know also gain in reliability and
are removed from the pool of bridges distributed to untrusted users.
When a user becomes eligible to invite friends, they are invited
to the same bridges at an elevated trust level. This encourages
users to be cautious when handing out invitations and limits a
malicious user’s ability to enumerate bridges through gaining trust
and inviting themselves. As long as no malicious users were added
to a bridge before it stopped being distributed to untrusted users,
the bridge can become immune from the malicious behaviour of a
censor. Salmon also tracks a user’s suspiciousness, which is increased
each time a bridge they know about is blocked. When a user’s
suspicion threshold has been reached, the user is banned from the
system. While Salmon’s use of trust levels and suspicion helps
to limit malicious behaviour among a less trusted pool of users,
it comes at the cost of limited privacy protections provided to
users, who are monitored in order to adjust trust and suspicion
assignments.

Trust networks provide an effective means of distributing bridges
that inherently disadvantages censors. However, connecting users
through their social graph may introduce a new target to censors:
attempting to learn those very social graphs of bridge users.

2.3 Protecting the Social Graph
Douglas et al. [13] narrowly define an adversarial censor as one
that simply blocks access to bridges rather than one that seeks to
identify and persecute users and members of their social network.
Using this threat model, Salmon tracks the invitees of trusted users
and stores a subset of each user’s social graph. The authors argue
that a state-level censor would gain little information about a user’s
social network from Salmon server logs compared to what they
would be able to learn from their access to state-connected social
media sites and other surveillance tools at their disposal. While
we concede that a sophisticated and determined censor may be
able to undermine most privacy-preserving mitigations of a bridge
distribution system, it does not follow that privacy protection for
users and their social networks should be abandoned altogether.
Since censorship strategies vary greatly across regions and can
change over time, it is impossible to know how a censor might
uniquely use server logs or a breach of the system that provides
clear evidence of individuals working together to evade censorship.

In Lox, we consider a censor that may seek out and punish cen-
sorship circumvention system users and their networks if they can
be identified.We thus strive to make it impractical, if not impossible,
for a censor to identify users’ friend groups even by compromising
the bridge distribution server during operation or by confiscating
information stored on it. As such, the bridge distribution server
must not learn, store, or log identifiable or linkable information
about the social graphs of users. Our threat model in Section 3.1
expands upon the protections of the social graph Lox provides,
noting that social networks could be reconstructed outside of Lox
by a censor that watches connections to particular bridges.
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Anonymous credentials combined with other cryptographic
primitives such as Pedersen commitments [33], ElGamal encryp-
tion [17] and zero-knowledge proofs [6], can provide annonymity to
users of a bridge distribution system, connecting over a Tor circuit,
and effectively protect their social graph with unlinkable multi-
show credentials. Hyphae [27] makes use of multiple anonymous
credentials and tokens, each able to support multiple attributes that
can be revealed to or hidden from the issuer to maintain privacy
and unlinkability while making requests. This makes the bridge
authority a less interesting target to a censor hoping to learn about
bridge users and their social networks.

Using Chase et al.’s anonymous credential scheme, in Lox, we
integrate Salmon-like trust levels and suspicion as attributes of an
anonymous credential scheme similar to Hyphae’s. We use the trust
level as a proxy for time spent as a user in the system where bridges
remain unblocked, and increase a user’s suspicion when a trusted
user’s bridges are blocked. A single Lox credential can contain all
attributes needed to maintain a user’s reputation and the attributes
taken together make up a user’s reputation and control their access
to privileged operations.

2.4 Bridge Enumeration Resistance
The bridge distribution problem measures effectiveness against a
censor in two ways. The first is through maximizing the number
of days a censor would need to keep a bridge they learn about
unblocked in order to gain additional advantages within the system.
The second is the degree to which a design choice benefits users
and disadvantages censors. Prior work has identified and employed
different techniques to limit malicious behaviour and maximize
effectiveness against censors.

Nasr et al. [30] take a game-theoretic approach to the bridge
distribution problem, finding that a bootstrapping period, during
which only trusted users are invited to use the system, is essential
to counter the optimal censor strategy. In line with this finding, the
systems we discussed above already involve restricting access to
trusted groups of users or else verifying their accounts prior to reg-
istration [13, 27, 37]. In its most effective simulation, Salmon [13]
began their simulation with a small group (20) of users who oper-
ated above the trust hierarchy and were able to subsequently invite
new highly trusted users. In Lox, we follow a similar bootstrapping
period to ensure that trusted users have time to establish groups of
users that will retain access to bridges that will remain available
regardless of the censor’s strategy for acting maliciously toward
bridges handed out to untrusted users.

2.4.1 Reputation Systems. As described in the previous sections,
prior work on bridge distribution systems each employ some form
of reputation system to limit access to functionality that has a
higher risk to the system if used maliciously [13, 27, 37]. This forces
the censor to make a tradeoff between gaining trust in order to
cause greater damage (i.e., learning more trusted bridges to block,
inviting more censors to bridges, etc., depending on the constraints
of the specific reputation system), and keeping bridges unblocked
for longer periods of time, which is necessary to build trust.

rBridge and Hyphae’s protocols allow users to accrue credit
by keeping their bridges unblocked. These credits can be used
to unlock or purchase new bridges or invitations. Salmon tracks

each user’s suspicion, trust level, and recommendation (social) graph,
which collectively help to ensure that trustworthy users and their
friends are rewarded with reliable connections to proxy servers and
censors are not elevated to trust levels where they can do significant
damage to the system, but expose the social graph to the Salmon
server. While no specific trust level scheme is fully evaluated in
Salmon, extending privileges according to time spent in the system
is compatible with rBridge and Hyphae’s privacy-preserving credit
schemes and can be used to enhance them.

In Lox, we propose a reputation system with trust levels that
a user can ascend after (privately) proving a period of time has
passed since gaining knowledge of bridges that remain unblocked.
Each trust level unlocks greater privileges for users.

2.4.2 Inheritance. We can limit the censor’s advantage further by
having invited users inherit certain properties from their inviters,
lest censors invite themselves in an attempt to learn new bridges
or acquire new privileges. While no other system uses this term,
Salmon [13] already incorporates the concept of inheritance as
we have defined it. In Salmon, when a user with a trust level of 𝐿
invites a friend to the system, the friend learns of the same bridges
the inviter knows and enters the system at a trust level of 𝐿 − 1,
yielding inheritance of bridges and trust level. To limit a malicious
actor from gaining an advantage we can also make suspiciousness
inheritable. If a user has seen a blocking event, any user they invite
can also be considered suspicious to prevent malicious users from
inviting themselves with a clean slate after behaving maliciously.

In Lox, we group some number of bridges into buckets; the de-
cryption key for a bucket is one of the inherited attributes in the
Lox credential, as is the level of suspicion, indicating the number
of blocked bridges a user has seen.
Summary: Lox incorporates each of the features described in this
section into a novel privacy-preserving scheme. Lox allows users
to build trust over time. Upon reaching a predetermined trust level,
users are able to invite a number of friends. When a user is invited
by a trusted user, they join Lox at a lower trust level and inherit
their inviter’s bridges and the number of blocking events they have
witnessed. These features are encoded as attributes in a user’s Lox
credential, which allows the user to remain anonymous through
their interactions with the system.

In Table 1, we summarize the contributions from prior work on
bridge distribution systems in terms of the different features we
have discussed in this section as well as those that we include in
the design and implementation of our system Lox, which we will
detail in the following sections.

3 LOX CONCEPT
Lox combines the above key features from previous workwith novel
enhancements in order to provide bridge distribution to socially
connected and unconnected users while protecting the social graph
even from the central Lox Authority server itself.

3.1 Threat Model
We envision our adversary to be a state-level censor with significant
resources and two high-level motivations:

(1) to learn of as many bridges as possible in order to block them
immediately or at some later time;
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Table 1: Summary of Bridge Distribution System Features

Bridge Features BridgeDB [34] Proximax [29] rBridge [37] Hyphae [27] Salmon [13] Lox

Bridge Availability
Openness email/https invitation invitation invitation Facebook email/https,

account invitation
Distribution by Trust Network

Social Graph Protection
Unlinkable Credentials k-times
Protects Social Graph N/A
Blinded Migrations

Enumeration Resistance
Friends Assigned to Same Bridges
Reputation System
Inheritance
Defined Trust Levels

(2) to learn the social graph of users.

Given that a state-level censor has vastly greater resources and
compute power than an individual (or non-profit organization),
we accept that it is impossible to completely stop a censor from
infiltrating and impacting our system, but we can prevent such a
censor from learning the social graphs of Lox users, while keeping
users’ actions anonymous and limiting the rate at which bridges
can be enumerated. We assume that a censor may pose as many
genuine users in order to cause disruptions and enumerate bridges
in order to block them.We also assume that a censor may attempt to
uncover the social graph by gaining access to communication logs
between the Lox Authority and Lox users. We acknowledge that
other tactics such as traffic fingerprinting and network scanning
to discover bridges [15, 28], registering a large number bridges
to act as honeypots, and DoS attacks against bridges or the Lox
Authority [23] are within the capabilities of many censors and have
a significant impact on bridge distribution. However, we consider
these problems to be out of scope for the Lox system we present.
Instead we aim to make Lox itself resistant to bridge enumeration
and ensure that users’ social graphs are not revealed by the Lox
system itself.

3.1.1 Lox Authority. A fully compromised Lox Authority (LA),
which verifies and distributes Lox credentials, could trivially block
all bridges in the system, meeting its first motivation. For the pur-
pose of protecting the list of bridges, we therefore assume that the
LA is not fully compromised by an adversary. We further assume
that the LA has committed to a set of keys for issuing and verifying
anonymous credentials and made this commitment publicly accessi-
ble. Davidson et al. [9] stress the importance of having the published
commitments to keys in a public place, such as the Tor consensus,
that is visible to all users and can be used to independently verify
the correctness of all tokens. Without such a commitment, the LA
could use a different key for each new Lox user to track users’ usage
of Lox. With this assumption we can assure privacy protection to
users (beyond the initial open-entry interaction with the LA) and
their social graph against the adversary’s second motivation, even if

the LA is fully compromised. To successfully distribute bridges, we
assume that the LA performs the Lox protocols correctly; however,
even if it does not, it will be unable to learn a user’s social graph.

Having described our threat model, we describe the elements
of our system that work together to preserve the privacy of and
ensure unlinkability between users while limiting the ability of a
malicious actor to enumerate and block bridges.

3.2 System Goals
We designed Lox with the overall goals of:

(1) Openness:where anyone with access to the Internet should
be able to access an open-entry invitation token for Lox or
else receive an invitation from a trusted user.

(2) Leveraging Trust Networks: to distribute bridges and al-
low highly trusted users to invite some number of friends
for each trust level increase.

(3) Privacy andUnlinkability of Users: by using anonymous
credentials [7] to maintain privacy of users and their social
graph as they use Lox.

(4) Enumeration Resistance: by protecting the bridges in our
bridgepool from discovery by a censor.

4 THE LOX SYSTEM
In the design and implementation of our Lox system, we aim to
protect the usage patterns of users as well as their social graph
through unlinkable, one-show transactions with the Lox Author-
ity. With these considerations in mind, we present our design and
implementation details of Lox, using the keyed-verification anony-
mous credential scheme proposed by Chase et al. [7] incorporating
many insights from Lovecruft and de Valence [27], and adding new
features of our own. Chase et al.’s anonymous credentials allow for
a credential holder to verify attributes of their credentials with an
authority arbitrarily many times without revealing their identity
or any other unnecessary attributes. Since the LA acts as both the
issuer and verifier of anonymous credentials, this is an appropriate
scheme to achieve our goals.
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4.1 Lox Authority
Lox relies on a single central Lox Authority (LA) that acts as both
the issuer and verifier of anonymous credentials and tokens for
all Lox protocols. We assume that the LA holds the bridge data-
base, containing hundreds to thousands of individual bridge records
(i.e., IP addresses and the secrets required to connect to each of
them) that can be leveraged by individuals to connect to the open
Internet. We further assume that the LA can verify with bridge op-
erators whether or not a bridge is blocked at any given time. A Lox
open-entry invitation token distributor is also required for our
system but could operate much like Tor’s existing BridgeDB [34]
to distribute invitation tokens by email, through an https website,
or embedded in a website or chat client. We note that the Lox in-
vitation token distributor and Lox Authority could be the same
entity.

The LA divides bridges into open-entry and invite-only buckets.
We consider that open-entry buckets are much more likely to be
distributed to malicious users whereas trusted buckets are less
likely to be held by malicious users. To limit a censor’s ability
to enumerate bridges and increase the probability that any given
user’s buckets will remain unblocked, open-entry buckets contain a
single bridge and invite-only buckets contain three bridges. The LA
assigns an ID 𝑖 to each bucket and maintains a global list of buckets.
Each bucket has an encryption key 𝐾𝑖 that the LA derives from a
hash function (i.e., 𝐾𝑖 = 𝐻 (𝐿𝐴𝑆𝐾 , 𝑖) where 𝐿𝐴𝑆𝐾 is a single secret
stored by the LA). For each bucket 𝑖 the LA encrypts the bucket
with the key 𝐾𝑖 and posts the full list of concatenated encrypted
buckets to a public website accessible to users. Since this website is
itself susceptible to blocking by a censor, the LA hands out a bridge
line, containing the information necessary to connect to a bridge,
to users presenting valid invitation requests (along with the initial
Lox credential, discussed below). Users are given the bridge key
(𝑖, 𝐾𝑖 ) as an attribute of their Lox credential. This allows them to
decrypt the corresponding encrypted bucket to access their bridges.
Open-entry buckets can upgrade to invite-only buckets over time.
To handle this, the LA pre-groups three open-entry buckets into
an invite-only superset bucket with its own unique key. A group
of new users will each be assigned to 1 of 3 open-entry bridges
in a superset bucket on approximately the same day. When these
users become trusted, because enough time has passed without the
bridges being blocked, they will all migrate to the superset bucket.
This also assumes that over time, new bridges will arrive into the
system to serve as open-entry bridges. Additionally, if a bridge in
a trusted bucket goes down, but is not blocked, it can be replaced
in the same bucket by the LA to be retrieved by the user, as we
explain in Section 4.2.5.

We note that an important aspect of open-entry bridge distri-
bution is the mechanism, like BridgeDB’s https/email distribution
mechanisms, with which the LA distributes particular open-entry
buckets to users requesting them. The LA should be implemented
to do this in a way that maximizes the chances of genuine users
gaining access to buckets and minimizes the likelihood of censors
being given the same buckets as genuine users. As this open-entry
distribution mechanism may look different for different systems,
we consider this to be orthogonal to Lox and leave this important

aspect of open-entry bridge distribution to future work; we discuss
it further in Section 6.

4.2 Lox Credentials and Tokens
Anonymous credentials are a versatile cryptographic construction
with practical uses in the areas of communication, payment and
credential transaction systems. Chase et al.’s anonymous credential
scheme [7] includesMAC𝐺𝐺𝑀 , a generalization of aMAC presented
by Dodis et al. [12], that is proved to satisfy the standard notion of
MAC unforgeability (uf-cmva security) in the generic group model
(GGM). As in Hyphae, Lox uses the MAC𝐺𝐺𝑀 -based anonymous
credentials to authenticate collections of attributes.

The LA can verify that a shown credential was authentically
issued, but is unable to link it to a particular credential it issued
since showings are blinded. Users can utilize the issuer’s public key
to verify that credentials issued to them are correctly authenticated.
We use several types of spend-once credentials that are issued and
verified by the LA.

4.2.1 Lox Credential. Lox users hold a Lox credential (Ψ𝔏) as a non-
rerandomizable (one-show) anonymous credential that is presented
for re-issue at every interaction between the user and the LA. It
contains the following attributes:

ID Φ: A random ID (nonce) is jointly created by the user and
the LA at Lox Credential issue time such that the LA does
not learn the ID of the issued credential, and the user cannot
unilaterally select it. When the user presents this credential
to the LA at the time of the next interaction, Φ is revealed
so the LA can add it to its database of spent IDs. It is then
discarded.

Time 𝑡 : Lox credentials have a time attribute that marks the
time the user last updated their trust level. If the user has
just joined the system, the time will be marked with their
join date.

Trust level 𝐿: Users receive a trust level attribute that is as-
signed by the LA when their credential is created. All open-
entry users enter Lox with 𝐿 = 0. All invited users enter Lox
with 𝐿 = 1. Users that can prove to the LA that a sufficient
time period has passed without the bridges in their bucket
becoming blocked, can upgrade their trust level through the
LA. If a user continues to hold a credential for an unblocked
bucket, they can continue to level up to a maximum of 𝐿 = 4
with intermittent level up requests to the LA. Table 2 shows
the days required to increase 𝐿 at each level and what each
level of 𝐿 allows users to do.
Compared to Salmon [13], users are punished more severely
in Lox due to its openness to untrusted and unauthenticated
users. If we assume that it is not impossible or particularly
challenging for a user to get a new credential, any credential
below our migration-eligible threshold would be discarded
in favour of a new one.

Bridge bucket 𝛽: Users receive (𝑖, 𝐾𝑖 ) as an attribute in their
credential where 𝑖 is a bucket ID assigned by the LA and𝐾𝑖 is
the encryption key used to encrypt the bucket. Open-entry
users receive one bridge in their bucket whereas invited
users receive three bridges.
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Table 2: User capabilities and invitations for different 𝐿 val-
ues as well as the days required to level up. Users migrating
to unblocked buckets are given 𝐿−2. A user’s trust level does
not increase beyond 𝐿 = 4. However, usersmoving up to 𝐿 = 4
receive 𝑎 = 6 invitations. Those that have had 𝐿 = 4 for 84
days or more can receive 𝑎 = 8.

𝐿 Status Invites 𝑎 Upgrade 𝑡
0 Untrusted, 1-bridge bucket 0 30
1 Trusted, 3-bridge bucket 0 14
2 Trusted, Invitations 2 28
3 Trusted, Invitations, Migration Eligible 4 56
4 Trusted, Invitations, Migration with Invitations Eligible 6, 8 84

Available invitations 𝑎: The invitation countdown counter
is an attribute that allows users to issue invitations once they
have advanced to 𝐿 ≥ 2. The 𝑎 value is set to the correct
value (see Table 2) when the user upgrades their trust level.
The value of 𝑎 is decremented for each invitation issued by
the user.

Blockages 𝑑: The blockages attribute records the number of
times the user has migrated to a new trusted bucket. Open-
entry users will always begin with 𝑑 = 0. Users who are
invited will inherit the 𝑑 value of their inviter. Experiencing
blockages limits the trust level a user can achieve; 3 and 4
blockages limit the user to trust levels 3 and 2 respectively,
after which they will be ineligible to migrate.

We note that in our design of Lox, we have indicated particular
thresholds for the 𝐿, 𝑡 , 𝑎, and 𝑑 attributes. The selection of these val-
ues started from 𝐿 and were otherwise selected with the intention
of demonstrating how a system can use trust levels to increase user
privileges as they use the system. We expect the particular values
chosen for 𝑡 , 𝑎, and 𝑑 will require further optimization and consid-
eration depending on the specifics of the system and threats faced
by Lox implementers. We discuss optimization of Lox parameters
further in Section 6.

4.2.2 Invitation Token. An open-entry invitation token (Ωℑ) is
issued to anyone that is able to request them through one of the
methods available to a new Lox user. We assume that Lox users will
have the same methods available as users of Tor’s BridgeDB [34]:
an https website, through email to a specific email address, or to
be embedded in a browser such as Tor. However, we note that
other distribution methods could be appropriate depending on the
deployment. Invitation tokens have their own ID attribute Φ, a time
attribute so that they can expire after some period, and an optional
attribute that can be used by the LA to select an open-entry bucket
from a specific pool of buckets (e.g., if buckets were further divided
into email, https, or browser bucket).

Lox incentivizes any new user with friends already using the
system with an elevated trust level, to request bridges from these
friends. Entering Lox with a trusted Invitation Credential automat-
ically gives the new user more privileges. However, open-entry
invitation tokens can fill the gap for users who are unconnected
to trusted friends or whose friends have not yet reached a high
enough trust level to issue invitations. Invitation tokens aim to
ensure anyone that needs a bridge is able to get one and can start

building their own trust level immediately even without friends
already using the system.

4.2.3 Invitation Credential. Invitation credentials (Ψℑ) can be gen-
erated only by trusted users when they achieve a trust level 𝐿 ≥ 2
and have invitations remaining (i.e., 𝑎 > 0). An invitation credential
contains a hidden invitation ID (Φ), the day (𝑡 ) that it was generated,
and the inviter’s bridge bucket key (𝛽) and blockages (𝑑). Proposed
invitation credentials are presented by the inviter to the LA and if
verified, are signed and issued back to the inviter to be given to a
friend. The invite ID ensures that invitation credentials can not be
reused once they are redeemed and the day attribute enforces that
they expire after 15 days.

4.2.4 Migration Key Credential & Migration Token. Lox allows
users to migrate to a new bucket 𝛽 under some circumstances. In
order to maintain the user’s privacy and ensure that the LA does
not learn either the old or the new 𝛽 value of the user requesting
the migration, all migrations are performed as two-step protocols.
There are two types of migration protocols in the Lox system:

(1) Trust Promotion: When an open-entry user requests a
trust promotion from 𝐿 = 0 to 𝐿 = 1 because their 𝑡 attribute
is set to a date more than 30 days before the current date
as shown in Table 2, and the (single) bridge that they know
has remained reachable over that time. This allows them to
learn of the superbucket that contains their current bridge
and two others.

(2) Blockage Migration: When a user with a trust level 𝐿 ≥ 3
and blockages 𝑑 < 4 requests to be unblocked and the LA
can confirm that the bridges in their bucket are blocked. This
allows them to learn of a new bucket and re-enter Lox with
a trust level 𝐿 − 2 and blockages 𝑑 + 1.

As discussed below, the LA maintains a list of buckets that are
eligible for migration. This list is updated daily to include newly
blocked buckets and bridges that have been newly added to the
database. When a request to migrate is initiated, the LA verifies that
the user meets the criteria to migrate for the indicated migration
type and if this succeeds, the LA blindly issues a migration key cre-
dential (Ψ𝔐) to the user. The attributes of a migration key credential
are a Lox credential ID (Φ) and the bucket the Lox credential is mi-
grating from (𝛽FROM). The LA returns this blindly issued credential
(so that the LA does not learn any of the attributes, save that they
match those in the blinded Lox credential whose attributes were
checked to be eligible for migration as described above), along with
an encrypted migration table, freshly encrypted for each request
(see Section 4.7 for details).

The user then uses a hash of Φ, 𝛽FROM, and the unblinded MAC
from the migration key credential to decrypt an entry from the
migration table to yield a migration token (Ω𝔐). Migration tokens
have attributes of Φ, the buckets 𝛽FROM and 𝛽TO the user is mi-
grating from and to, and a flag indicating whether this is a trust
promotion or a blockage migration.

In the second phase, the user blindly presents their Lox credential
and their migration token (with matching Φ and 𝛽 = 𝛽FROM), and
the LA blindly issues in return a new Lox credential with 𝛽 set to
𝛽TO, and 𝐿 and 𝑑 modified appropriately.
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Table 3: Lox Protocol Requests: Lox credential attribute options in executions of each protocol by a Lox user, along with
what extra credentials or tokens are presented as Hidden, and what new credentials or tokens are generated as the output
of the protocol. Note that a new Lox credential is output after every protocol except trust promotion and check blockage,
which issue a migration key credential (Ψ𝔐) that the user can use to decrypt their migration token (Ω𝔐). The attribute
states for all other credentials can be found in Appendix A.

Protocol ID Φ Time 𝑡 Trust 𝐿 Bucket 𝛽 Invites Left 𝑎 Blockages 𝑑 ExtraH New Output
Open-entry Invitation - - - - - - Ω𝔍

* Ψ𝔏
Trust Promotion R H R H R R - Ψ𝔐 → Ω𝔐
Trust Migration R H R H R R Ω𝔐 Ψ𝔏

Level Up R H R H H H Ψℜ Ψ𝔏
Issue Invite R H H H H H Ψℜ Ψ𝔏 , Ψℑ

Redeem Invite R H - H - H Ψℑ Ψ𝔏
Check Blockage R H R H H H - Ψ𝔐 → Ω𝔐

Blockage Migration R H R H H H Ω𝔐 Ψ𝔏
* Ω𝔍 is revealed, not hidden; the presented Φ for the to-be-issued Ψ𝔏 is encrypted to make subsequent credentials unlinkable.

4.2.5 Bucket Reachability Credentials. Bucket reachability creden-
tials (Ψℜ) are created by the LA (see Section 4.6 below) and act as
a certificate of whether or not the bridges in a particular bucket
are accessible to users. Bucket reachability credentials have only
two attributes, the current day (𝑡 ), and the bridge bucket (𝛽) and
must be presented to the LA for protocols that require proof of an
unblocked bucket (see Table 3). Each bucket with reachable bridges
will have its bucket reachability credential placed in the bucket
itself (in the encrypted bucket list) each day. Bridge users would
download their encrypted bucket (over Tor) every day to obtain
their current bucket reachability credential. At the same time, they
would learn replacements for any bridges in their bucket that had
gone offline (but not blocked).

4.3 Attribute Options
Issuing Time: In prior work [7, 27], credential attributes were
either revealed (R) to or hidden (H ) from the issuer by the user at
credential issuing time. We add two additional options: the server-
selected (S) option is used for attributes that are selected solely by
the LA such as the bucket attribute 𝛽 ; the joint (J ) option is used
for credential ids Φ. Each side contributes a random component to
the attribute, so that the user cannot select the resulting Φ (as in a
server-selected attribute), and the LA cannot learn the resulting Φ
(as in a hidden attribute), but is assured that it will be random.
Presentation Time: All attributes, no matter how they are issued
will either be revealed (R) or hidden (H ) from the LA when a
credential or token is presented by the user.

4.4 Credential Instantiation
We outline the MAC𝐺𝐺𝑀 -based construction of Chase et al. [7] ap-
plied to the context of Lox with the LA acting as both the credential
issuer and verifier.

Let𝐴, 𝐵 be generators of a fixed additive groupG of prime order ℓ
such that log𝐵 (𝐴) is unknown. For each credential with𝑛 attributes,
the LA’s secret key is the vector (𝑥0, 𝑥0, 𝑥1, . . . , 𝑥𝑛)

$←− (Z/ℓZ)𝑛+2
and the public key is (𝑋0, 𝑋1, . . . , 𝑋𝑛) = (𝑥0𝐴 + 𝑥0𝐵, 𝑥1𝐴, . . . , 𝑥𝑛𝐴).

To create the tag (𝑃,𝑄) for a vector of attributes (𝑚1, . . . ,𝑚𝑛) ∈
(Z/ℓZ)𝑛 , the issuer selects 𝑏 $←− (Z/ℓZ)∗ and computes 𝑃 ← 𝑏𝐵,

𝑄 ←
(
𝑥0 +

∑𝑛
𝑖=1 𝑥𝑖𝑚𝑖

)
𝑃 . To issue a credential with hidden at-

tributes, the user picks an ElGamal public key 𝐷 , encrypts the
hidden attributes to that key, and creates a zero-knowledge proof
of the desired properties of the hidden attributes. The LA can then
homomorphically compute the encryption of 𝑄 to the key 𝐷 , even
though it cannot learn 𝑄 itself. The user decrypts to learn 𝑄 . The

user rerandomizes the MAC by picking 𝑡
$←− (Z/ℓZ)∗ and setting

(𝑃 ′, 𝑄 ′) = (𝑡𝑃, 𝑡𝑄).
To show a credential with hidden attributes, the user presents

Pedersen commitments of the hidden attributes, a zero-knowledge
proof that the hidden attributes have the desired properties, and
a designated-verifier proof (that requires the secret key to check)
that the (hidden) MAC is correct.

4.5 Lox Authority Protocols
Having described the components of Lox, we now give a high-level
overview of the various interactions a user of our system may have
with the LA through each of the Lox protocols.
Open-entry Invitation. Any user can request a Lox credential
from the LA by presenting an open-entry invitation with Ωℑ .Φ re-
vealed. When a valid open-entry request is presented to the LA and
the invitation token Ωℑ is verified by the LA in zero knowledge, the
initial Lox credential Ψ𝔏 is blindly issued. The attributes presented
during an open-entry request are summarized in Table 3.

Attributes in the initial Lox credential are set and issued unilat-
erally by the LA, excluding the jointly chosen credential ID Φ that
ensures subsequent transactions can not be linked to the user.
Trust Promotion and Trust Migration. As discussed in Sec-
tion 4.2.4, trust promotion from 𝐿 = 0 to 𝐿 = 1 is a two-step protocol,
marking the upgrading user’s transition from an untrusted user to
a trusted user where they gain access to a new trusted superbucket
credential with three bridges. When the LA identifies that an open-
entry bucket has remained reachable for 30 days, it stops giving
that bridge’s bucket credential to open-entry users. This will occur
just prior to the time when the first untrusted users that were given
access to the bucket become eligible to upgrade to 𝐿 = 1. Once this
occurs, the only way new users will learn the newly trusted bucket
credential is by invitation from someone already using that bucket.

To initiate the Trust Promotion interaction, the user must present
a valid Lox credential. We note that the protocol does not require a
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bridge reachability credential since if an untrusted bridge becomes
blocked, the LA will not place it in the table of eligible trust promo-
tion migrations. The LA verifies the presented Lox credential and
all zero knowledge proofs, then checks that Φ was not used before
to request a trust promotion, and adds it to the trust promotion
specific list of spent tokens but does not add it to the used Lox
credential spent token list. The LA then returns a migration key
credential to the user (described in Section 4.2.4). The user uses
their migration key credential to decrypt their migration token
(Ψ𝔐). The user is then ready to make a trust migration request
by presenting their migration token along with their current Lox
credential for verification and their updated Lox credential with
the hidden new bucket attribute matching the migration token’s
Ψ𝔐 .𝛽TO for issuing.

If the LA successfully verifies these credentials in zero knowl-
edge, the LA blindly issues the new Lox credential to the user,
without having learned which buckets the user had migrated from
or to.
Level Up. Lox requires that users actively engage with the LA to
upgrade trust levels after a pre-determined interval has passed,
as described in Table 2. For example, even if a user has known of
their buckets long enough to have achieved the highest trust level,
if they have not upgraded past 𝐿 = 1, they will only be eligible
to upgrade to 𝐿 = 2, thereby rewarding continued engagement
with Lox. A user with 𝐿 ≥ 1 must prove to the LA that their Lox
credential attribute 𝑡 is older than some pre-determined number
of days (see Table 2) and that the bucket in their Lox credential is
reachable at the time of the upgrade by blindly presenting a valid
bucket reachability credential for their bucket 𝛽 . If the credentials
are successfully verified by the LA in zero knowledge, the LA issues
the new Lox credential with today’s date, 𝐿 ← 𝐿 + 1 and 𝑎 set to
the appropriate value for the new level in Table 2. That table also
lists the advantages that accrue to users at higher trust levels.
Issue Invite. Users with trust levels of 𝐿 = 2 become eligible to
issue invitations. Invitations allow untrusted users to enter into the
system at an elevated trust level (𝐿 = 1) and gain knowledge of the
same bucket (𝛽) and blockages (𝑑) held by their inviter. Grouping
friends in the same bucket encourages the inviter to be cautious in
distributing invitation tokens and prevents a malicious user who
is able to gain access at a high trust level from enumerating more
bridges. To issue an invitation, the user blindly presents their Lox
credential with 𝑎 > 0 and a bridge reachability certificate to the LA.
If the LA successfully verifies these credentials in zero knowledge,
the LA will sign the new Lox credential (with a decremented 𝑎) as
well as the new invitation credential, and issue them to the user.

Lox’s trusted invitations give very little advantage to a censor
that keeps bridges open to gain trust since gaining and distributing
more invitations does not allow them to enumerate more bridges.
Since blockages are inherited, they are also unable to issue an
invitation to themselves to hide past malicious behaviour. Thus,
if a censor gains access to an invite-only bucket, their most likely
actionwould be to immediately block the bridges. Still, whether they
choose to block immediately or during a certain event or crisis, this
behaviour only impacts a fraction of the overall system. Genuine
users, conversely, may be inclined to share bridge addresses they
know with friends outside of Lox, so grouping users in the same
bucket matches expected user behaviour patterns and the possibility

of gaining access to new bridges in the case of a blockage provides
a significant advantage to users over just sharing bridges directly,
incentivizing the use of Lox.
Redeem Invite. A new, invited user can create a Lox credential
with the bucket 𝛽 given to them in their invitation credential by
blindly presenting their invitation credential to the LA. If the LA
successfully verifies their invitation token and proposed new Lox
credential in zero knowledge, the LA blindly issues the new cre-
dential back to the user.
Check Blockage and Blockage Migration. If a trusted bucket
becomes blocked (i.e., two or more bridges in a bucket are blocked
), there are limited avenues for trusted users to re-enter the system
at an elevated trust level. We assume that the majority of Lox users
will need to re-enter the system as untrusted users either through
open-entry invitations or else through invitations from friends with
knowledge of different buckets. However, users who have achieved
𝐿 ≥ 3 are able to migrate to a new trusted bucket. When trusted
users migrate, their 𝑑 attribute increases by 1. When a user reaches
𝑑 = 4 they are no longer able to upgrade their trust level high
enough to be eligible to migrate, as described in Section 4.2.1.

Migrating after a blockage is a two-step protocol similar to the
Trust Upgrade protocol from 𝐿 = 0 to 𝐿 = 1. A user can initiate
migration to another trusted bucket when their bucket becomes
blocked by first requesting the check blockage protocol, blindly
presenting their Lox credential to the LA. The LA checks that Φwas
not used before to request a blockage migration, but does not add
it to the used token list since users may need to make the request
multiple times if the migration table has not yet been updated or if
the bridge is just temporarily unavailable.

Upon verifying the credential in zero-knowledge, the LA returns
a migration key credential to the user (described in Section 4.2.4).
The user uses their migration key credential to decrypt their migra-
tion token Ω𝔐 and blindly presents this, along with their current
and proposed new Lox credential, to the LA with the blockage
migration protocol. If the LA successfully verifies these credentials
in zero-knowledge, it will sign the new Lox credential and issue it
to the user, allowing them to access their new trusted bridges.

All users in a particular bucket that are eligible to migrate will
migrate to the same unblocked trusted bucket in order to keep
friend groups together. Since Lox does not track which users are
connected to one another through invitations, partitioning users of
blocked buckets by friend group into new unblocked buckets, as is
done in Salmon [13], is not possible.

We provide the details of the attribute options for each of our
Lox credentials as they are used across protocols in Appendix A.

4.6 Ancillary Tasks Performed by the Lox
Authority

Aside from issuing and verifying credentials, the LA performs a
number of tasks to set up the system and provide information about
the system.
Bridge Reachability Check. We assume that a reliable checking
mechanism exists for bridge operators to determine whether or not
their bridges are blocked (and where), and that any blocked bridges
that are detected are reported to the LA when a bridge is blocked.
The LA collects this data from bridge operators once daily and
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generates a bucket reachability credential for each bucket known
to it. If two or more of the three bridges in a bucket are unreachable,
the bucket is considered to be blocked for the purpose of the Ψℜ
and the date attribute of the token is not updated to the current date.
After checking the reachability of each bridge in a bucket, the LA
places each Ψℜ in its corresponding encrypted bucket to be posted
with the full list of encrypted buckets described in Section 4.1. Users
with credentials for the bucket are able to anonymously retrieve
the Ψℜ for their bucket through a Tor circuit each day.
Maintain a Table of Eligible Migrations. For both trust pro-
motion from trust levels 𝐿 = 0 to 𝐿 = 1 and bucket blockage
migration operations after a trusted bucket’s bridges are blocked,
a user can request to be migrated to a new bucket. This requires
that the LA maintain a table of eligible bucket migrations for each
of these two operations that can be encrypted and sent to a user
when a migration is requested and the presented Lox credential
is verified. The trust promotion migration table holds the list of
open-entry buckets that have remained unblocked since they ap-
peared in an open-entry bucket, and their corresponding trusted
superset buckets. The blockage migration table holds the list of
trusted buckets that have become blocked and their corresponding
trusted unblocked, replacement buckets that have been held in a
reserve of hot spare buckets that have not yet been handed out to
users.
Maintain a List of Used Token Nonces. As in Hyphae [27], our
system makes use of several spend-once tokens that the LA must
maintain in a database of spent token ids for each type of credential
and token. At issue time, users will prepare ids (random nonces)
that are hidden from the LA in order to be included as attributes
of a new credential. The LA adds its own nonce homomorphically
to the hidden id attribute, signs the credential and issues it back
to the user. At presentation time, the ID is revealed to the LA, that
then adds the ID to its database of spent id tokens for the given
credential, allowing for unlinkable spend-once tokens.

4.7 Encryption of Migration Tables
Unlike previous bridge distribution proposals, Lox has the unique
ability to allow trusted users to learn new bridges after a trust up-
grade or blockage event without revealing to the authority which
bridges the user previously, or subsequently, knows about. As de-
scribed in Section 4.6, the LA maintains a table ⟨𝛽FROM𝑖

, 𝛽TO𝑖
⟩𝑟
𝑖=1

of eligible migrations. (In fact, there is one table for trust promo-
tion migrations and one for blockage migrations, but we will just
consider one, as they work in the same way.) For the first step in
the two-part protocols for trust migration and blockage migration,
the user requests a blinded migration key credential (Ψ𝔐) and an
encrypted migration table of all eligible migrations. Recall from
Section 4.4 that the issuing of the blinded migration key credential
will give to the user a pair (𝑃𝑘, 𝐸𝑛𝑐𝐷 (𝑄𝑘)) for an ElGamal key 𝐷
chosen by the user, but that 𝑄𝑘 will be unknown to the LA. The
LA will create a fresh encrypted migration table for each request,
as the encryptions will depend on 𝑃𝑘 . (This is in fact the most
expensive step of the Lox protocols, as we will see later in Table 4.)
The user must learn only the 𝛽TO𝑖

for the 𝑖 for which the user’s
current 𝛽 = 𝛽FROM𝑖

, and also receive a signed migration token

(Ω𝔐) containing their current Φ, and that single (𝛽FROM𝑖
, 𝛽TO𝑖

)
pair.

In order to do this, the LA generates a hashtable such that for each
𝑖 , therewill be an entry in the hashtablewith key𝐻1 (Φ, 𝛽FROM𝑖

, 𝑄𝑘𝑖 )
and value 𝐸𝐻2 (Φ,𝛽FROM𝑖

,𝑄𝑘𝑖 ) (𝛽TO𝑖
, 𝑃𝑖 , 𝑄𝑖 ). Here 𝐻1 and 𝐻2 are hash

functions, (𝑃𝑖 , 𝑄𝑖 ) is a MAC on the migration token that has at-
tributes Φ, 𝛽FROM𝑖

, and 𝛽TO𝑖
, and (𝑃𝑘,𝑄𝑘𝑖 ) is a MAC on the mi-

gration key credential that has attributes Φ and 𝛽FROM𝑖
. When

the user decrypts their 𝑄𝑘 , they can compute 𝐻1 (Φ, 𝛽FROM, 𝑄𝑘)
and use that as the index to the hashtable to find the appropriate
encrypted entry. They then compute 𝐻2 (Φ, 𝛽FROM, 𝑄𝑘) to use as
the decryption key for that entry, to yield the attributes and MAC
for the migration token. This satisfies the requirements that only
the entry corresponding to the current bucket 𝛽FROM of the user
with Lox credential ID Φ can be decrypted, even if the migration
key credentials are shared with other users, and that the migration
token can only be used once. A valid, decrypted migration token
with attributes Φ, 𝛽FROM, 𝛽TO is required in the second step of the
migration protocol when the migration to a new bucket actually
occurs. The user migrating either from 𝐿 = 0 to 𝐿 = 1 or else from
a now blocked bucket in which they had 𝐿 ≥ 3 and 𝑑 < 3 must
blindly present their old Lox credential with hidden values Φ and 𝛽
that is proven in zero knowledge to match the migration token’s Φ
and 𝛽FROM, and an updated Lox credential with a 𝛽 that matches
the Migration Token’s 𝛽TO.

5 EVALUATION
We developed an implementation of the Lox system to evaluate the
practicality of our social graph protective protocols. In this section
we present the performance results of running each protocol as
well as an evaluation of the performance our system achieved. We
consider our system in relation to the existing Tor bridge distri-
bution network, the number of users that are typically served by
the existing infrastructure and how the addition of the Lox system
would impact this.

5.1 Implementation and Experiment Setup
We implemented our Lox protocols in Rust, available at https://git-
crysp.uwaterloo.ca/iang/lox. Each of our experiments was run on a
single core of an Intel Xeon E7-8870 at 2.40GHz running Ubuntu
16.04. Noting that Tor metrics puts the number of active bridges just
above 3500 [26], we test the performance of our protocols across
bridge pools of various sizes from 900 to 9000 in increments of 900.
For each test, the total number of bridges in the bridge pool are
divided in half such that half of the bridges are sorted into open
invitation buckets and the other half are sorted as hot spare bridges.
None of the initial bridges are sorted into trusted-user buckets until
users request trust promotions. The request size and time, response
size and time, and response handling time for each protocol were
averaged over 10 000 runs.

5.2 Results and Evaluation
The results of running each protocol with 3600 bridges total, 1800
open-entry buckets with 1 bridge each and 600 hot spare buckets
with 3 bridges each, are displayed in Table 4. We note that for most
of the reported protocols, the sizes and times are the same for all
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Table 4: Performance statistics per run for Lox protocols initialized with 3600 bridges (1800 untrusted open-entry one-bridge
buckets and 600 hot spare three-bridge buckets) over 10 000 runs. All times are reported in milliseconds (ms) and sizes are
reported in bytes. Results for the check blockage protocol are reported for 5, 50, and 100% of trusted bridges being blocked as
the performance changes accordingly. All times and sizes reported in the table are the same for all bridge pool sizes for all
protocols except trust promotion and check blockage, which change linearly with a growing bridge pool.

Protocol Request Size Request Time 𝜎 Response Size Response Time 𝜎 Response Handling Time 𝜎

Open Invitation 332 0.75 0.02 740 3.23 0.03 2.26 0.03
Trust Promotion (0→1) 2 216 9.94 0.04 378 104 364.2 0.3 2.3 0.2
Trust Migration (0→1) 936 4.29 0.03 584 6.50 0.04 2.80 0.03
Level Up (1→ · · · →4) 3 368 15.16 0.05 712 15.28 0.05 3.70 0.03

Issue Invitation 1 672 8.00 0.04 1 480 15.04 0.06 7.29 0.05
Redeem Invitation 1 576 7.00 0.04 680 9.09 0.05 3.24 0.03
Check Blockage 5% 744 3.27 0.03 6 404 11.22 0.02 0.25 0.01
Check Blockage 50% 744 3.27 0.03 63 104 64.31 0.09 0.49 0.01
Check Blockage 100% 744 3.26 0.03 126 104 122.5 0.1 0.75 0.02
Blockage Migration 1 224 5.84 0.03 840 9.39 0.04 4.12 0.03

Figure 1: The response time of the check blockage protocol
grows linearly with the number of blocked bridges. The std-
devs are shaded, but may be too small to see.

problem sets (i.e., bridge pools from 900 to 9000). The exceptions
are the trust promotion and check blockage protocols, since both
require the Lox authority to compute and send an encrypted hash
table of the bridges eligible for migration. For these, the size and
time required to receive and handle the response grows linearly
with the number of open-entry buckets and the number of blocked
bridges, respectively. For example, the server response time for the
check blockage protocol is displayed in Figure 1.

We can use our results to analyze the practicality of Lox in terms
of the added cost to existing bridge users and to provide estimated
system requirements, specifically the number of cores needed for
deployment.

The latency considerations for each Lox protocol can be calcu-
lated using our performance statistics from Table 4. Each would
contribute additional latency and overhead to an existing bridge dis-
tribution system such as Tor’s BridgeDB on both client and server
sides. Lox was designed to impose a minimal burden on bridge
operators and users and could be implemented to use existing chan-
nels for bridge distribution by replacing directly distributed bridges
with open invitations that users can then use to create their Lox
credential. This would cause minimal disruption to the usage pat-
terns of current users and bridge operators of a system like Tor’s
BridgeDB.

Client-side Latency.We find that the latency for individual users
is reasonable for all operations. For trust promotion and check
blockage protocols, server side response sizes and times are hin-
dered by the hashtable of bridges that must be sent in the migration
credential and thus have the highest latency. Trust promotion con-
sistently has the worst response time (364.2ms) and size (378 kB)
but since every Lox user will only make a single trust promotion
request and they will have access to an open-entry bridge to receive
the response (i.e., a sufficiently high-bandwidth connection), this
should not be a significant burden. Below we discuss the number
of cores Lox needs to support user requests in greater detail.

The check blockage protocol, in the worst case where 100% of
bridges are blocked, has somewhat better performance than trust
promotion (response time of 122.5ms and size 126 kB). However, if
the user has lost access to all three of their bridges, they must first
acquire a new open-entry bridge in order to run the check blockage
protocol without exposing their IP address to the LA, adding to
the overall burden of running this protocol. Much more than the
trust promotion protocol, the check blockage protocol is likely to
see spikes in requests frequency that coincide with bridges being
blocked, which could further slow the response time for individual
users. A strategic and patient censor could exploit this bottleneck in
Lox to slow down or even deny successful blockage migrations to
coincide with a particular event, such as an election or planned coup,
as described in rBridge [37]. A targeted, long-term strategy like this
by the censor would not only limit access to bridges at a critical
moment, but could create a significant spike in check blockage
and blockage migration requests while users migrate to unblocked
bridges. If the censor subsequently blocks the newly-migrated-to
bridges, trusted users will be effectively locked out of accessing
trusted bridges, which could have a spillover effect on increased
open invitation requests as well. Although the scenario described
is possible for a determined censor, we note that it would require a
censor to gain access to the system and leave bridges unblocked for
genuine users for a minimum of 72 days. From Table 4 we can infer
that the check blockage protocol is particularly vulnerable to bursts
in requests, intensifying with the percentage of blocked bridges.
The open invitation protocol is much more robust against bursts in
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Figure 2: The total number of cores required per million
users for varied bridge pool sizes and one bucket being
blocked on average every Δ days. Frequent bridge blocking
increases the load on the system, but this is mitigated by a
larger bridge pool for a constant user base.

usage and thusmay be a better stopgap solution for regaining access
to bridges in a large-scale attack against Lox’s trusted bridges.

In addition to running the Lox protocols themselves, users must
periodically download the posted table of encrypted buckets and
their reachability credentials. Each encrypted entry in the table is
756 bytes, making a total of 1.4MB for our evaluated bridge pool.

Overall, we find that the latency added by Lox is reasonable
and would not overburden users or bridge operators. The ability
for trusted users to migrate to new bridges when their bridges are
blocked provides a strong incentive for users to compromise on
some latency and overhead increases.
Server-side Load. Lox requires periodic communication between
bridge users and the Lox authority. Though a single user may com-
municate with the LA infrequently (twice in the same day for mi-
gration protocols, otherwise with larger gaps between protocols in
most cases), we must consider how frequently each protocol may
be called across the entire userbase to get a sense of the worst-case
load on our system. Among our Lox protocols, the majority will be
called at most one time by every new Lox user. However, users that
have a trust level of 𝐿 = 4 will be able to level up every 84 days and
issue eight invitations over the same period. Using our results from
Table 4, we can calculate the CPU cost of the level up protocol and
the issue invitation protocol as:

Level Up: 15.27ms / 84 days = 0.18ms / day
Issue Invitation: 15ms · 8 / 84 days = 1.43ms / day

Check blockage and blockage migration protocols could be re-
quested by trusted users as often as bridges become blocked, po-
tentially creating a significant burden on the system.

Suppose there are 𝑏 buckets, 1 bucket gets blocked every Δ days,
and we remove blocked buckets from the eligible list of migrations
after𝑊 days. Then there will be𝑊 /Δ blocked buckets in steady
state, and any given bucket will get blocked every 𝑏 · Δ days. A
user will run the check blockage and blockage migration protocols
every 𝑏 · Δ days and it will cost (5.31 + 0.065 · 𝑊 /Δ + 9.4)ms.

Then, we can calculate the total for check blockage and blockage
migration for𝑊 = 365:

(5.31 + 0.065 · 𝑊 /Δ + 9.4)ms / (𝑏 · Δ) days
= (14.71/Δ + 23.725/Δ2)/𝑏ms / day

Thus, the total cost in steady state is:

1.61 + (14.71/Δ + 23.725/Δ2)/𝑏ms / day
Figure 2 shows the number of cores needed for each𝑛 = 1 000 000

users for varying bridge pools (the load is linear in 𝑛). We see that
frequent bridge blocking increases the load on the system but this
effect is mitigated by the size of the bridge pool as the same number
of users are less impacted by blocked buckets if there are more
buckets in the pool. Overall, we see that Lox can provide reasonable
support for millions of users with a single core even in the worst
case where all currently handed out bridges (but not the reserved
hot spares) are blocked each day.

6 LIMITATIONS
6.1 Sock-puppet Attacks
The ability for censors to create sock-puppet accounts to enumer-
ate and block bridges is a well-known problem noted in prior
work [13, 27, 30, 37]. Unlike prior work that limits bridge distri-
bution to trusted users [27, 37] or relies on a third party to limit
duplicate accounts [13] at the expense of protecting the social graph,
we provide an open-entry avenue to join Lox with fewer protec-
tions. This means that we must contend with a greater number
of censor-controlled sock-puppet accounts attempting to gain ac-
cess to bridges. In the previous sections, we have detailed several
features of Lox’s design that aim to contribute to enumeration re-
sistance by censors but we have not provided a full evaluation of
these features. To summarize, in Lox we propose:

(1) Limiting the number of bridges distributed to new users to a
single bridge until the user is eligible to advance to the next
trust level.

(2) Limiting a user’s privileges until they have spent some con-
figurable amount of timewith knowledge of unblocked bridges.

(3) Allowing trusted users to invite friends incrementally.
(4) Allowing trusted users to invite friends only to their bucket.
(5) Using the concept of inheritance to prevent users who have

migrated to a new bucket after a blocking from re-joining
with an elevated trust level and no record of the blocking
event.

While these interventions together limit the effectiveness of sock-
puppet attacks, we note that they are still imperfect and do not stop
sock-puppets at the entry point to Lox. Using the entry pathways
that the Tor project currently uses to distribute Lox open-entry
invitationsmay lead to bridges being almost completely inaccessible
in some regions.

Salmon [13] relies on the use of a third party with rigorous
sock-puppet protection for its own purposes, to limit sock-puppet
accounts at the entry point to their system. With the assumption
that most accounts are not censors and that censor accounts can
only do limited damage, Salmon is able to offer assurances about
the viability of their trust level scheme. However, bridges are most
needed in regions where censorship methods are most sophisticated
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and restrictive. It is difficult to conceive of a third party in such
regions that is unblocked, readily available, and likely to cooperate
with a bridge distribution system to limit sock-puppet accounts.
Furthermore, limiting sock puppets may be impossible against a
third party operating in a censored region where the censor/state
can issue any documents or resources required to bypass the check
for sock-puppets. Genuine users would therefore either need a
bridge to set up an account with a friendly third party or else
bridge distribution would be inaccessible, or in the best case, no
less accessible than Lox.

Lox takes the position that protection of the social graph should
not be sacrificed for the ability to monitor and punish untrusted
malicious users and their friend groups since this could have con-
sequences extending beyond the Lox system in the event of a com-
promise by the censor. In practice, this may be an idealistic position
that results in genuine users being unable to access Lox through
an open-entry pathway. Still, bootstrapping for trusted users and
a system that protects their usage and social networks while re-
warding their good behaviour, does not exist in currently deployed
bridge distribution systems and we anticipate that this could bene-
fit many users. Lox is intended as a proof of concept system that
provides privacy protection and incorporates some of the benefits
found in less privacy protective systems such as Salmon. We hope
that our design can move the conversation on bridge distribution
forward and act as a step towards an acceptable implementation
that balances these inherently conflicting issues of protecting user’s
privacy and preventing sock puppets from enumerating the vast
majority of bridges.

6.2 Unoptimized Parameters
Our design of Lox, as well as the implementation and evaluation,
include a number of parameters such as the number of bridges that
are distributed to untrusted vs. trusted users, the time it takes to
upgrade between trust levels, etc. We note here that our parameter
selection is meant to be demonstrative, not prescriptive, and is in-
tended to be flexible to meet the needs of any particular deployed
system. The stated parameters are an example to demonstrate a
system that increases privileges based on a user’s trust level. In-
tentionally, nothing in Lox prevents altering the parameters we
have chosen or optimizing them for a specific use case, and changes
to Lox parameters will have minimal impact on the performance
of our Lox protocols though requiring more frequent requests to
the LA will impact server-side load. Furthermore, nothing in Lox
prevents incorporating an appropriate algorithm to determine how
open-entry bridges are distributed, which we discuss further below.

Our hope with Lox was to show one piece of a deployable bridge
distribution system: that protection of the social graph can be rea-
sonably achieved while still incorporating enumeration resistance
mechanisms from prior work. In the creating of this piece, it is cru-
cial that we do not prohibit anyone from optimizing the particular
details of a suitable deployment further. It therefore remains an
open research question as to whether there is a parameter set that
sufficiently satisfies all three of the bridge features we identified:
bridge availability, social graph protection, and enumeration resis-
tance. We offer our thoughts and insight into extensions that we
expect would further improve Lox in Section 7.

6.3 Attacks on Small User Bases
If the set of Lox users is very small, the adversary may be able
to infer which user is making a request such as trust promotion
by timing when each recipient of an open-entry request becomes
eligible for it. To mitigate this, it is important to ensure that a con-
stant stream of users continue to join Lox during bootstrapping and
afterward. To bootstrap Lox, open invitations with elevated trust
levels should be distributed to some number of highly trusted users
for a limited time period prior to public release of open invitations.

7 EXTENSIONS
7.1 Extensions for Bridge Operators
Bridge operators provide the proxy that users of the bridge distri-
bution system can use to connect to the open Internet. Lox was
intentionally designed to be compatible with existing bridge distri-
bution systems in order to remove obstacles to adoption. However,
some extensions involving significant upgrades to the current pro-
tocols run by bridge operators, may help to improve the Lox system
further. Bridge tokens could be distributed by a bridge operator for
users who are able to prove bridge usage over some period of time
each day. The LA could then require some number of valid bridge
tokens, along with the other valid Lox credentials for upgrading
trust and generating invitations for issuing. This would serve to
make it even more challenging for a censor to gain access to trusted
functionality without sinking significant time and resources into
keeping the bridges up and functioning.

7.2 Extensions for User Privacy
In our implementation and construction of Lox, the protocol that is
being run is known to the LA, thereby leaking information about
the time a specific protocol is requested and the frequency with
which different protocols are run. We could eliminate even this
leakage by blinding the protocol that is being requested with a zero
knowledge array lookup. This change would require users to send
exactly the same credentials and tokens for each request, even if
they are no-op tokens. As an example, in our current scheme, a
successful check blockage request from the user results in a valid
migration token issued by the LA, allowing the user to migrate
to a new bucket. To allow the same functionality without the LA
learning which protocol was called, the LA would issue a migration
token to the user for every request, regardless of whether or not it
checks for blocked bridges. The vast majority of migration tokens
issued would then be no-op tokens which would simply allow a
user to migrate to the same bucket they are already in. If the check
blockage protocol is called and bridges are found to be blocked,
the migration table would be updated and the LA would issue a
true migration token in zero knowledge. In both cases, credential
issuance would continue in the same way for all protocols and
the LA would not know which protocol was called. These changes
would increase the size and computation time required to complete
each protocol but this may be an acceptable trade off for the added
privacy it would provide.
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7.3 Location Based Distribution
Lox could provide location-based bridge distribution by having the
LA sort pools of bridges based on their location and then create
buckets from the bridges in these pools. When a user requests an
open-entry invitation token, they could indicate their region or
request bridges from a particular region, which could be encoded as
an attribute of the invitation token.When the invitation is presented
to the LA, a bucket within the requested region’s bridge pool can
be prioritized and a (hidden) location attribute can be added to
the user’s Lox credential for future migrations. The LA must also
be able to verify when bridges worldwide are indeed blocked for
particular regions, rather than experiencing a temporary outage
for reasons other than censorship. This is complicated by locations
of bridges and the differing capabilities and behaviours of censors
around the world.

7.4 Open-Entry Bridge Distribution
Several parameters in Lox and adjacent to the Lox system are situa-
tion and system dependent. The amount of time required to move
between trust levels in Lox is configurable and should be adjusted
to complement each system’s bridge pool, rate of bridge churn,
the algorithm used to determine which bridges are distibuted to
which users, and the number of users that know about a single
bridge. Future work could look at creating an algorithm to distrib-
ute open-entry bridges in a way that optimizes for genuine users
becoming trusted users and incorporates metrics such as the rate of
bridge churn, the number of different channels of distribution, the
number of users per bridge group, and the percentage of users that
are censors. Research in this direction could help to improve Lox
further by increasing the likelihood that new users and not censors
tend to occupy new buckets.

7.5 System Rollback and Recovery
To make Lox robust against a mass-blockage event against bridges,
the LA should replace blocked bridges in existing buckets with
fresh ones, upon discovery of the blockage. Credentials of users
who have not migrated will continue to work. For users who (fruit-
lessly) migrated, the LA could offer an “unmigrate” protocol that
keeps users who show/prove their last migration was later than
the mass-blockage time in their same bucket, but restores their
level/suspicion, or allow reuse of the old credential used to migrate
in order to refresh it without changing its non-ID attributes.

8 CONCLUSION
In this paper, we presented Lox, a bridge distribution system that
leverages users’ trust networks for bridge distribution while pro-
tecting the privacy of the users’ social graphs, and limits the impact
of malicious behaviour on the system.

Lox allows users to advance trust levels towards elevated privi-
leges for proven good behaviour (i.e., bridges remain unblocked).
Highly trusted users can invite friends, and migrate to new bridges
after a blockage event. In order to protect the privacy of users and
their social networks, Lox is implemented using anonymous, un-
linkable credentials [7]. Lox also introduces several features to limit
the impact of a censor’s malicious behaviour. We implemented the
Lox protocols in Rust, and measured their performance to show

that Lox can provide reasonable protection of the social graph for
millions of users with even a single core.
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A OVERVIEW OF ATTRIBUTE OPTIONS FOR
LOX CREDENTIALS AND TOKENS

Having described the different attribute options utilized by the Lox
system, we summarize the attribute options used for each attribute
in all transactions between the user and LA in Tables 5–9, with the
details in the following subsections.

A.1 Lox Credential Attribute Options Across
Protocols

Lox credentials are initially issued by the LA with either an open
invitation or an invitation from a trusted user. In both cases, the
user must present their blinded credential id (Φ) to be contributed
to and signed by the LA and then included as part of the issued
credential. When the Lox credential is next presented to the LA,
the credential id (Φ) is revealed to the LA so that it can be added to
a database of seen credential ids, making the credential invalid for
subsequent showings. The tables above show the attribute options
for each protocol for issuing operations by the LA (Table 5) and
credential presentation by the client (Table 6).

A.2 Invitation Credential Attribute Options
Trusted invitation tokens Ψℑ (Table 7) can be generated by users
with a trust level 𝐿 ≥ 2. To ensure that invitations can both be
verified by the LA as valid and remain unlinkable to the user that
requests them, the invitation id attribute Ψℑ .Φ is jointly issued
and revealed by the invitee when requesting their Lox credential.
The bucket 𝛽 and blockage 𝑑 attributes are hidden both at issue
and claim time so the LA never learns the bucket of the inviter or
invitee.

A.3 Bucket Reachability Credential Attribute
Options

Bucket reachability credentials Ψℜ (Table 8) are made available and
refreshed each day by the LA with only the date 𝑡 and bucket 𝛽
as attributes. Users always present bucket reachability credentials
along with their existing Lox credential to prove the liveness of
their bucket 𝛽 . Both 𝛽 attributes are hidden from the LA but are
able to be proved equal in zero knowledge.

A.4 Migration Token Attribute Options
As discussed above, the Migration Token Ω𝔐 (Table 9) is created
with the credential ID Φ and bucket 𝛽FROM from the user’s Lox
credential and the decrypted migration table value 𝛽TO. When
presenting the Migration Token to the LA, Φ will be revealed with
all 𝛽 attributes hidden. However 𝛽FROM will be proven in zero
knowledge to match the user’s presented Ψ𝔏 .𝛽 from their existing
credential and 𝛽TO will be proven in zero knowledge to match the
user’s prepared Ψ𝔏 .𝛽 (to be migrated to).
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Table 5: Lox Credential Issuing: Lox credential attribute options in issuing operations by the LA. Note that trust promotion
and check blockage protocols issue a migration token and so are not included in this table. These can be found in Table 9.

Name Description Open Invite Trust Migration Level Up Issue Invitation Redeem Invitation Blockage Migration
Ψ𝔏 .Φ ID J J J J J J
Ψ𝔏 .𝑡 Time S R R H S R
Ψ𝔏 .𝐿 Trust 0 1 R H 1 H
Ψ𝔏 .𝛽 Bucket S H H H H H
Ψ𝔏 .𝑎 Invites Left 0 0 S H S S
Ψ𝔏 .𝑑 Blockages 0 0 H H H H

Table 6: LoxCredential Presentation: Lox credential attribute options in presentation transactionswith the LA. Note that open-
entry invitation and redeem invitation protocols are not included in this table. This is because they do not involve presenting
Lox credential attributes. Redeem invitation attribute options can be found in Table 7.

Name Description Trust Promotion Level Up Issue Invitation Check Blockage Migration
Ψ𝔏 .Φ ID R R R R R
Ψ𝔏 .𝑡 Time H H H H H
Ψ𝔏 .𝐿 Trust 0 R H R R
Ψ𝔏 .𝛽 Bucket H H H H H
Ψ𝔏 .𝑎 Invites Left 0 H H H H
Ψ𝔏 .𝑑 Blockages 0 H H H H

Table 7: Credential: Invitation
Credential

Name Description Issue Redeem
Ψℑ .Φ Invitation ID J R
Ψℑ .𝛽 Bucket H H
Ψℑ .𝑑 Blockages H H

Table 8: Credential: Bucket
Reachability Credential

Name Description Presentation
Ψℜ .𝑡 Time R
Ψℜ .𝛽 Bucket H

Table 9: Credential: Migration Token

Name Description Presentation
Ω𝔐 .Φ Lox credential ID R

Ω𝔐 .𝛽FROM From Bucket H
Ω𝔐 .𝛽TO To Bucket H

16


	Abstract
	1 Introduction
	2 Background
	2.1 Bridge Distribution Problem
	2.2 Bridge Availability
	2.3 Protecting the Social Graph
	2.4 Bridge Enumeration Resistance

	3 Lox Concept
	3.1 Threat Model
	3.2 System Goals

	4 The Lox System
	4.1 Lox Authority
	4.2 Lox Credentials and Tokens
	4.3 Attribute Options
	4.4 Credential Instantiation
	4.5 Lox Authority Protocols
	4.6 Ancillary Tasks Performed by the Lox Authority
	4.7 Encryption of Migration Tables

	5 Evaluation
	5.1 Implementation and Experiment Setup
	5.2 Results and Evaluation

	6 Limitations
	6.1 Sock-puppet Attacks
	6.2 Unoptimized Parameters
	6.3 Attacks on Small User Bases

	7 Extensions
	7.1 Extensions for Bridge Operators
	7.2 Extensions for User Privacy
	7.3 Location Based Distribution
	7.4 Open-Entry Bridge Distribution
	7.5 System Rollback and Recovery

	8 Conclusion
	Acknowledgments
	References
	A Overview of Attribute Options for Lox Credentials and Tokens
	A.1 Lox Credential Attribute Options Across Protocols
	A.2 Invitation Credential Attribute Options
	A.3 Bucket Reachability Credential Attribute Options
	A.4 Migration Token Attribute Options


