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Abstract. The increasing use of blockchain-based cryptocurrencies like
Bitcoin has run into inherent scalability limitations of blockchains. Pay-
ment channel networks, or PCNs, promise to greatly increase scalability by
conducting the vast majority of transactions outside the blockchain while
leveraging it as a final settlement protocol. Unfortunately, first-generation
PCNs have significant privacy flaws. In particular, even though transac-
tions are conducted off-chain, anonymity guarantees are very weak.
In this work, we present Astrape, a novel PCN construction that achieves
strong security and anonymity guarantees with simple, black-box cryp-
tography, given a blockchain with flexible scripting. Existing anonymous
PCN constructions often integrate with specific, often custom-designed,
cryptographic constructions. But at a slight cost to asymptotic perfor-
mance, Astrape can use any generic public-key signature scheme and
any secure hash function, modeled as a random oracle, to achieve strong
anonymity, by using a unique construction reminiscent of onion routing.
This allows Astrape to achieve provable security that is “generic” over
the computational hardness assumptions of the underlying primitives.
Astrape’s simple cryptography also lends itself to more straightforward
security proofs compared to existing systems.
Furthermore, we evaluate Astrape’s performance, including that of a con-
crete implementation on the Bitcoin Cash blockchain. We show that de-
spite worse theoretical time complexity compared to state-of-the-art sys-
tems that use custom cryptography, Astrape operations on average have
a very competitive performance of less than 10 milliseconds of computa-
tion and 1KB of communication on commodity hardware. Astrape ex-
plores a new avenue to secure and anonymous PCNs that achieves simi-
lar or better performance compared to existing solutions.

1 Introduction

1.1 Payment channel networks

Blockchain cryptocurrencies are gaining in popularity and becoming a significant
alternative to traditional government-issued money. For instance, over 300,000
Bitcoin transactions alone [2] are processed every day. Unfortunately, such high
demand inevitably leads to well-known scalability barriers [8]. Bitcoin, for instance,
processes less than 10 transactions every second [20], far less than a reasonable
global payment system.
? An extended version of this paper, and its accompanying source code, is available. [12]
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Payment channels [11] are a common technique to scale cryptocurrency
transactions. In a nutshell, Alice and Bob open a payment channel by submitting
a single transaction to the blockchain, locking up a sum of cryptocurrency from
both of the parties. They can then pay each other by simply mutually signing a
division of the locked money. Additional blockchain transactions are required only
when the channel is closed by submitting an up-to-date signed division, unlocking
the latest balances of Alice and Bob. This allows most activity to remain off-
chain, while retaining the blockchain for final settlement: as long as the blockchain
is secure, nobody can steal funds. More importantly, payment channels can be
organized into payment-channel networks (PCNs) [20], where users without any
open channels between them can pay each other through intermediaries.

1.2 Anonymity in PCNs

Unfortunately, “first-generation” PCNs based on the HTLC (hash time-locked
contract), such as Lightning Network [11], have a significant problem — poor
anonymity [18]. In the worst case, HTLC payments are as transparently linkable
as blockchain payments [18], threatening the improved privacy that is often
cited [23, 24] as a benefit of PCNs. Furthermore, naive implementations fall
victim to subtle fee-stealing attacks, like the “wormhole attack” [19], that threaten
economic viability.

A sizable body of existing work on fixing PCN security and privacy exists.
On one hand, specialized constructions achieve strong anonymity in specific set-
tings, such as Bolt [14] for hub-based PCNs on the Zcash blockchain, providing
for indistinguishability of two concurrent transactions even when all interme-
diaries are malicious. On the other hand, general solutions for all PCN topolo-
gies, like Fulgor [18] and the AMHL (Anonymous Multi-hop Locks) family [19],
achieve a somewhat weaker, topology-dependent notion of anonymity: relation-
ship anonymity [6, 17]. This property, common to onion-routing and other anony-
mous communication protocols, means that two concurrent transactions cannot
be distinguished as long as they share at least one honest intermediary.

1.3 Why boring cryptography?

Unfortunately, there remains a shortcoming common to all existing anonymous
PCN constructions — custom, often number-theoretic and sometimes complex
cryptographic primitives. No existing anonymous PCN construction limits itself
to the bare-bones cryptographic primitives used in HTLC — black-box access
to a generic signature scheme and hash function. For example, AMHL uses
either homomorphic one-way functions or special constructions that exploit the
mathematical structure of ECDSA or Schnorr signatures and Tumblebit uses a
custom cryptosystem based on the RSA assumption. Blitz [5], though relying on
an ostensibly black-box signature scheme, requires it to have a property1 that
rules out many post-quantum signature schemes.
1 In particular, the ability for any party, given any public key, to generate new public
keys that correspond to the same private key yet are unlinkable to the previous public



Astrape: Anonymous Payment Channels with Boring Cryptography 3

However, it is unclear that relationship anonymity requires sophisticated tech-
niques. Relationship anonymity appears to be relatively “easy” elsewhere. Well-
understood anonymous constructs like onion routing and mix networks exist for
communication with no more than standard primitives used in secure commu-
nication (symmetric and asymmetric encryption). Of course, communication is
probably easier — indeed some go beyond relationship anonymity with only sim-
ple cryptography — but it seems plausible that PCNs can use similarly elemen-
tary primitives to achieve anonymity.

Furthermore, “boring” cryptography has practical advantages. For one, non-
standard cryptography poses significant barriers to adoption. Reliable and per-
formant implementations of novel cryptographic functions are difficult to obtain,
and tight coupling between a PCN protocol and a particular cryptographic con-
struction makes swapping out primitives impossible. With use of black-box cryp-
tography, a system is generic over cryptographic hardness assumptions — in-
stead of assuming that, say, the RSA or discrete-log problems are hard, we only
need to assume that there exists, for example, some secure signature scheme and
some secure hash function.

Thus, we believe that efficient yet privacy-preserving PCNs that only use well-
understood and easily replaced black-box cryptographic primitives are crucial
to usable PCNs. In fact, AMHL’s authors already proposed that “an interesting
question related to [anonymous PCN constructions] is under which class of hard
problems such a primitive exists” [19] that they conjecturally answered with
linear homomorphic one-way functions.

1.4 Our contributions

In this paper, we present Astrape,2 a PCN protocol that limits itself to “boring”,
generic cryptography already used in HTLC, yet achieves strong relationship
anonymity. Despite achieving comparable security, privacy, and performance to
other anonymous PCN constructions, Astrape does not introduce any crypto-
graphic constructs other than those used in HTLC. This is accomplished using a
novel construct reminiscent of onion routing that avoids the use of any form of
zero-knowledge verification.

2 Background and related work

2.1 First-generation PCNs with HTLC

An extremely useful property of payment channels is that they can be used to
construct payment channel networks (PCNs) [20, 10, 8], allowing users without
channels directly between each other to pay each other via intermediaries. At the
heart of any PCN is a secure multi-hop transaction mechanism — some way of

key. This is crucial to the “stealth addresses” that Blitz’s pseudonymous privacy rests
upon.

2 Greek for “lightning”, pronounced “As-trah-pee”.
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Alice paying Bob to pay Carol without any trust in Bob. Most PCNs implement
this using a smart contract known as the Hash Time-Lock Contract (HTLC). An
HTLC is parameterized over a sender Alice, the recipient Bob, a deadline t, and
a puzzle s. It locks up a certain amount of money, unlocking it according to the
following rules:

– The money goes to Bob if he produces π where H(π) = s before time t,
where H is a secure hash function.

– Otherwise, the money goes to Alice.

We can use HTLC to construct secure multi-hop transactions. Consider a
sender U0 wishing to send money to a recipient Un through untrusted intermedi-
aries U1, . . . , Un−1. At first, U0 will generate a random π and s = H(π), while
sending the pair (π, s) to Un over a secure channel. U0 can then lock money in a
HTLC parameterized over U0, U1, s, t1, notifying U1. U1 would send an HTLC
over U1, U2, s, t2, notifying U2, and so on. The deadline must become earlier at
each step — t1 > t2 > · · · > tn — this ensures that in case of an uncooperative
or malicious intermediary, funds always revert to the sender.

The payment eventually will be routed to Un, who will receive an HTLC over
Un−1, Un, s, tn. The recipient will claim the money by providing π; this allows
Un−1 to claim money from Un−2 using the same π, and so on, until all outstanding
HTLC contracts are fulfilled. U0 has successfully sent money to Un, while the
preimage resistance of H prevents any intermediary from stealing the funds.

2.2 Hub-based anonymous payment channels

Unfortunately, HTLC has an inherent privacy problem — a common identifier
s = H(π) visible to all nodes in the payment path [14, 18, 19]. This motivates
anonymous PCN design. Hub-based approaches form the earliest kind of anony-
mous PCN design. Here, the shape of the network is limited to a star topology
with users communicating with a centralized hub. Some solutions are highly spe-
cialized, such as Green and Miers’ Bolt [14], which relies on the Zcash blockchain’s
zero-knowledge cryptography. Other solutions, such as Tumblebit [15] and the
more recent A2L [22], provide more general solutions that work on a wide vari-
ety of blockchains.

Hub-based PCN constructions tackle the difficult problem of providing unlink-
ability between transactions despite the existence of only a single untrusted inter-
mediary. It is therefore unsurprising that specialized cryptography is needed to
protect anonymity. On the other hand, observations of real-world PCNs like the
Lightning Network, as well as economic analysis [13], show that actual PCNs often
have intricate topologies without dominating hubs. General, topology-agnostic
solutions are thus more important to deploying private PCNs in practice.

2.3 Relationship-anonymous payment channels

Unlike hub-based approaches, where no intermediaries are trusted, general pri-
vate PCN constructions target relationship anonymity. This concept, shared
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with onion routing and other anonymous communication protocols, assumes
at least one honest intermediary. Thus intermediaries are in fact crucial to
relationship-anonymous PCNs’ privacy properties. Like most hub-based ap-
proaches, relationship-anonymous payment channels do not by themselves deal
with information leaked by side channels such as timing and value.

The earliest solution to PCN privacy in this family was probably Fulgor and
Rayo [18], a closely related pair of constructions that can be ported to almost all
HTLC-based PCNs. Fulgor/Rayo combines a “multi-hop HTLC” contract with
out-of-band ZKPs to remove the common identifier across payment hops.

In a later work, Malavolta et al. [19] introduced anonymous multi-hop locks
(AMHL), a rigorous theoretical framework for analyzing private PCN contracts.
The AMHL paper provided a concrete instantiation using linear homomorphic
one-way functions (hOWFs), as well as a conjecture that hOWFs are necessary
for implementing anonymous PCNs. They also presented a variant that uses a
clever encoding of homomorphic encryption in ECDSA to be used in ECDSA-
based cryptocurrencies like Bitcoin. The latter “scriptless” variant was generalized
in later work to a notion of adaptor signatures [4], where a signature scheme like
ECDSA is “mangled” in such a way that a correct signature reveals a secret based
on a cryptographic condition. The authors of AMHL also discovered “wormhole
attacks” on HTLC-based PCNs. These attacks exploit a fundamental flaw in the
HTLC construction to allow malicious intermediaries to steal transaction fees
from honest ones, a problem that AMHL’s anonymity techniques also solve.

More recently, Blitz [5] introduced one-phase payment channels that support
multi-hop payments without a two-phase separation of coin creation and spend-
ing, improving performance and reliability. Blitz also achieves stronger anonymity
than HTLC, but its notion of anonymity is strictly weaker than the relationship
anonymity of AMHL and Fulgor/Rayo. Other relationship-anonymous systems
consider powerful adversaries that control most nodes and achieve indistinguisha-
bility of concurrent transactions, but Blitz considers local adversaries controlling
a single intermediary and limits itself to hiding the rest of the path from this
intermediary.

3 Our approach

As we argued in Section 1.3, all of these existing solutions share an undesirable
reliance on either custom cryptographic constructions or primitives with special
properties, like Blitz’s stealth-address signature schemes. This causes inflexibil-
ity, difficult implementation, and an inability to respond to cryptanalytic break-
throughs like practical quantum computing.

Astrape is our solution to this problem. We show with a novel design that
avoids the zero-knowledge verification paradigm, anonymous and atomic multi-
hop transactions can be constructed with nothing but the two building blocks of
HTLCs — hashing and signatures. Unlike existing work, no specific assumptions
about the structure of the hash function or signature scheme are made, allowing
Astrape to be easily ported to different concrete cryptographic primitives and
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its security properties to “fall out” from those of the primitives. This also allows
Astrape to achieve high performance on commodity hardware using standard
cryptographic libraries.

3.1 Generalized multi-hop locks

In our discussion of Astrape, we avoid describing the concrete details of a specific
payment channel network and cryptocurrency. Instead, we introduce an abstract
model — generalized multi-hop locks. This model readily generalizes to different
families of payment channel networks.

We model a sender, U0, sending money to a receiver, Un, through intermedi-
aries U1, . . . , Un−1. We assume a “source routing” model, where the graph of all
valid payment paths in the network is publicly known and the sender can choose
any valid path to the recipient. After an initialization phase where the sender
may securely communicate parameters to each hop, each user Ui where i < n
creates a coin and notifies Ui+1. This coin is simply a contract `i+1 known as a
lock script, that essentially releases money to Ui+1 given a certain key ki+1. We
call this lock the right lock of Ui and the left lock of Ui+1.

Finally, the payment completes once all coins created in the protocol have
been unlocked and spent by fulfilling their lock scripts. Typically, this happens
through a chain reaction where the recipient’s left lock `n is unlocked, allowing
Un−1 to unlock its left lock, etc.

Formally, we model a GMHL over a set of participants Ui as a tuple of four
PPT algorithms L = (Init,Create,Unlock,Vf), defined as follows:

Definition 1. A GMHL L = (Init,Create,Unlock,Vf) consists of the following
polynomial-time protocols:

1. 〈sI0, . . . , (sIn, kn))〉 ⇐ 〈InitU0
(1λ, U1, . . . , Un), InitU1

, . . . , InitUn〉: the initializa-
tion protocol, started by the sender U0, that takes in a security parameter 1λ

and the identities of all hops Ui and returns an initial state sIi to all users
Ui. Additionally, the recipient receives a key kn.

2. 〈(`i, sRi−1), (`i, sLi )〉 ⇐ 〈CreateUi−1
(sIi−1),CreateUi(s

I
i )〉: the coin-creating pro-

tocol run between two adjacent hops Ui−1 and Ui, creating the “coin sent from
Ui−1 to Ui”. This includes a lock representation `i as well as additional state
on both ends — unlocking the lock represented by `i releases the money.

3. ki ⇐ UnlockUi(`i+1, (s
I
i , s

L
i , s

R
i ), ki+1): the coin-spending protocol, run by

each intermediary Ui where i < n, obtains a valid unlocking key ki for the
“left lock” `i given its “right lock” `i+1, its unlocking key ki+1 (already verified
by Vf below), and Ui’s internal state.

4. {0, 1} ⇐ Vf(`, k): given a lock representation ` and an unlocking key k, return
1 iff the k is a valid solution to the lock `

As an example, a formalization of HTLC in the GMHL model can be found in
the extended version of this paper [12, App. A].
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Generalizability to non-PCN systems. We note here that GMHLmakes no mention
of typical PCN components such as channels, the blockchain, etc. This is because
GMHL is actually agnostic of how exactly the locks are evaluated and enforced.
In a typical PCN, these locks will be executed within bilateral payment channels,
falling back to a public blockchain for final settlement.

However, other enforcement mechanisms can be used. Notably, all the locks
could simply be contracts directly executing on a blockchain. In this way, any
anonymous PCN formulated in the GMHL model is equivalent to a specification
for a provably anonymous on-chain, multi-hop coin tumbling service that can
anonymize entirely on-chain payments by routing them through multiple inter-
mediaries.

Comparison to existing work. GMHL is an extension of anonymous multi-hop locks,
the model used in the eponymous paper by Malavolta et al. [19]. In particular,
AMHL defines an anonymous PCN construction in terms of the operations KGen,
Setup, Lock, Rel, Vf, four of which correspond to GMHL functions.

Although AMHL’s model is useful, we could not use it verbatim. This is
largely because AMHL’s original definition [19] also included its security and
privacy properties, while we wish to be able to use the same framework in a purely
syntactic fashion to discuss PCNs with other security and anonymity goals.

Nevertheless, GMHL can be considered as AMHL, reworded and used in a
more general context. As we will soon see, Astrape’s desired security and privacy
properties are actually very similar to those of AMHL, though we will consider
other systems formulated in the GMHL framework along the way. Astrape can
be considered an alternative implementation of the same “anonymous multi-hop
locks” [19] construct.

3.2 Security and execution model

Now that we have a model to discuss PCN constructions, we can discuss our
security model, as well as a model of the GMHL execution environment in which
Astrape will execute.

Active adversary. We use a similar adversary model to that of AMHL [19]. That is,
we model an adversary A with access to a functionality corrupt(Ui) that takes in
the identifier of any user Ui and provides the attacker with the complete internal
state of Ui. The adversary will also see all incoming and outgoing communication
of Ui. corrupt(Ui) will also give the adversary active control of Ui, allowing it to
impersonate Ui when communicating with other participants.

Anonymous communication. We assume there is a secure and anonymous message
transmission functionality Fanon that allows any participant to send messages
to any other participant. Messages sent by an honest (non-corrupted) user with
Fanon hide the identity of the sender and cannot be read by the adversary,
although the adversary may arbitrarily delay messages.
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There are many ways of implementing Fanon, the exact choice of which is out-
side the scope of this paper. One solution recommended by existing work [18, 19]
is an onion-routing circuit constructed over the same set of users Ui, constructed
with a provably private protocol like Sphinx [9]. Public networks such as Tor
may also be used to implement Fanon.

Exposed lock activity. In contrast to communication, lock activity — the content
of all locks being created, as well as the unlocking keys during unlocking — is not
secure. This is because in practice, lock activity often happens on public media
like blockchains. We pessimistically assume that the adversary can see all lock
activity, while a non-adversary only sees lock activity concerning locks that it
sends and receives.

Liveness and timeouts. We assume that every coin lock `i comes with an appro-
priate timeout that will return money to Ui−1 (i.e., able to be unlocked by a sig-
nature from Ui−1 after the timeout) if Ui does not take action. We also assume
that each left lock `i’s deadline is at least δ later than that of the right lock `i+1,
where δ is an upper bound on network latency between honest parties, even un-
der disruption by the adversary. In the most common setting of a PCN consist-
ing of bilateral payment channels backed by a blockchain, this is essentially a
blockchain censorship-resistance assumption. With a liveness assumption, we can
then omit timeout handling from the description of the protocol, in line with re-
lated work (such as AMHL [19]).

Infallible lock execution. We formulate Astrape in the GMHL model, and assume
the existence of a mechanism that will guarantee that cryptocurrency locks
are always correctly executed in the face of arbitrary adversarial activity. In
practice, both bilateral payment channels falling back to a general-purpose
public blockchain (like Ethereum) and direct use of this blockchain are good
approximations of this mechanism.

Lock functionality. We assume that inside our on-chain contracts we are able to
use at least the following operations:

– Concatenation, producing a bitstring x||y of length |n+m| from two bitstrings
x, y, where x has length n and y has length m.

– Bitwise XOR, producing a bitstring x⊕ y from two bitstrings x, y

as well as the cryptographic hash function H defined below. An implication of
this assumption is that PCNs on blockchains with highly restricted scripting
languages, like Bitcoin, cannot use Astrape.

Cryptographic assumptions. One of Astrape’s main goals is to make minimal
cryptographic assumptions. We assume only:
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– Generic cryptographic hash function. We assume a hash function H, modeled
as a random oracle for the purpose of security proofs, producing λ bits of
output, where 1λ is the security parameter. We use the random oracle both
as a pseudorandom function and as a commitment scheme, which is well
known [7] to be secure.

– Generic signature scheme. We assume a secure signature scheme that allows
for authenticated communication between any two users Ui and Uj .

3.3 Security and privacy goals

Against the adversary we described above, we want to achieve the following
security and privacy objectives:

Relationship anonymity. Given two simultaneous payments between different
senders S{0,1} and receivers R{0,1} with payment paths of the same length
intersecting at the same position at at least one honest intermediate user, an
adversary corrupting all of the other intermediate users cannot determine, with
probability non-negligibly better than 1/2 (guessing), whether S0 paid R0 and
S1 paid R1, or S0 paid R1 and S1 paid R0. This is an established standard for
anonymity in payment channels [18, 19] and is analogous to similar definitions for
anonymous communication [21, 6]. It is important to note that the adversary is
not allowed to corrupt the sender — senders always know who they are sending
money to.

Balance security. For an honest user Ui, if its right lock `i is unlocked, Ui must
always be able to unlock its left lock `i−1 even if all other users are corrupt.
Combined with the timeouts mentioned in our security model, this guarantees that
no intermediary node can lose money even if everybody else conspires against it.

Wormhole resistance. We need to be immune to the wormhole attack on PCNs,
where malicious intermediaries steal fees from other intermediaries. The reason
why is rather subtle [19], but for our purposes this means that given an honest
sender and an honest intermediary Ui+1, `i cannot be spent by Ui until Ui+1

spends `i+1. Intuitively, this prevents honest intermediaries from being “left out”.

4 Construction

4.1 Core idea: balance security + honest-sender anonymity

Unlike existing systems that utilize the mathematical properties of some cryp-
tographic construction to build a secure and anonymous primitive, Astrape is
constructed out of two separate broken constructions, both of which use boring
cryptography and are straightforward to describe:

– XorCake, which has relationship anonymity but lacks balance security if
the sender U0 is malicious
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– HashOnion which has balance security, but loses relationship anonymity
in the Unlock phase. That is, an adversary limited only to observing Init
and Create cannot break relationship anonymity, but an adversary observing
Unlock can.

The key insight here is that if we can combine XorCake and HashOnion in such
a way to ensure that HashOnion’s Unlock phase can only reveal information when
the sender is malicious, we obtain a system, Astrape, that has both relationship
anonymity and balance security. This is because the definition of relationship
anonymity assumes an honest sender: if the sender is compromised, it can always
simply tell the adversary the identity of its counterparty, breaking anonymity
trivially. It is important to note that such a composition does not in any way
weaken anonymity compared to existing “up-front anonymity” systems like AMHL,
even in the most pessimistic case.3

We now describe XorCake and HashOnion, and their composition into Astrape.

4.2 XorCake: anonymous but insecure against malicious senders

Let us first describe XorCake’s construction. XorCake is an extremely simple
construction borrowed from “multi-hop HTLC”, a building block of Fulgor [18]. It
has relationship anonymity, but not balance security against malicious senders.

Recall that in GMHL, the sender (U0) wishes to send a sum of money to the
recipient (Un) through U1, . . . , Un−1. At the beginning of the transaction, the
sender samples n independent λ-bit random strings (r1, . . . , rn). Then, for all
i ∈ 1, . . . , n, she sets n values si = H(ri ⊕ ri+1 ⊕ · · · ⊕ rn), where H is a secure
hash function. That is, si is simply the hash of the XOR of all the values rj
for j ≥ i. U0 then uses the anonymous channel Fanon to provide Un the values
(rn, sn) and all the other Ui with (ri, si, si+1).

Then, for each pair of neighboring nodes (Ui, Ui+1), Ui sends Ui+1 a coin
encumbered by a regular HTLC `i+1 asking for the preimage of si+1. Un knows
how to unlock `n, and the solution would let Un−1 unlock `n−1, and so on. That
is, each lock `i is simply an HTLC contract asking for the preimage of si.

In the extended version [12, App. A], we give the formal definition of XorCake
in the GMHL framework.

XorCake by itself satisfies relationship anonymity. A full proof is available in
the Fulgor paper from which XorCake was borrowed [19], but intuitively this is
because ri will be randomly distributed over the space of possible strings because
H behaves like a random oracle. This means that unlike in HTLC, no two nodes
Ui and Uj can deduce that they are part of the same payment path unless they
are adjacent.

3 In a sense then, Astrape has “pseudo-optimistic” anonymity. Its design superficially
suggests an optimistic construction with an anonymous “happy path” and a non-
anonymous “unhappy path”, but the latter non-anonymity is illusory — the sender
can always prevent the “unhappy” path from deanonymizing the transaction even if
all other parties are malicious.
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State-mismatch attack. Unfortunately, XorCake does not have balance security.
Consider a malicious sender who follows the protocol correctly, except for sending
an incorrect ri to Ui. (Note that Ui cannot detect that ri is incorrect given a
secure hash function.) Then, when `i+1 is unlocked, `i cannot be spent! In an
actual PCN such as the Lightning Network, all coins “left” of Ui will time out,
letting the money go back to U0. U0 paid Un with Ui’s money instead of her own.
We call this the “state-mismatch attack”, and because of it, XorCake is not a
viable PCN construction on its own. In Fulgor, XorCake was combined with out-
of-band zero-knowledge proofs of the correctness of ri, but as we will see shortly,
Astrape can dispense with them.

4.3 HashOnion: secure but eventually non-anonymous

We now present HashOnion, a PCN construction that has balance security but
not relationship anonymity. Note that unlike HTLC, HashOnion’s non-anonymity
stems entirely from information leaked in the Unlock phase, a property we will
leverage to build a fully anonymous construction combining HashOnion and
XorCake.

At the beginning of the transaction, U0 generates random values si for i ∈
{1, . . . , n}, then “onion-like” values xi, recursively defined as xi = H(si||xi+1),
xn = H(sn||0λ).

Essentially, xi is a value that commits to all sj where j ≥ i. An onion-like
commitment is used rather than a “flat” commitment (say, a hash of all sj where
j ≥ i) as it is crucial for balance security, as we will soon see.

For all intermediate nodes 0 < i < n, the sender sends (xi+1, si) to Ui, while
for the destination, the sender sends sn. Then, each intermediary Ui−1 sends to
its successor Ui a lock `i, which can be only be unlocked by some ki = (si, . . . , sn)
where H(si||H(si+1||H(. . . H(sn||0λ)))) = xi. Ui−1 constructs this lock from the
xi it received from the sender. Finally, during the unlock phase, the recipient
Un solves `n with kn = (sn). This allows each Ui to spend `i, completing the
transaction.

For balance security, we need to show that with a solution ki+1 = (si+1, . . . , sn)
to `i+1, and si, we can always construct a solution to `i . This is obvious: we just
add si to the solution: ki = (si, si+1, . . . , sn).

One subtle problem is that Ui needs to make sure that its left lock is actually
the correct `i and not some bad `′i parameterized over some x′i 6= H(si||xi+1).
Otherwise, its right lock might get unlocked with a solution that does not let
it unlock its left lock. Fortunately, this is easy: given si, xi+1 from the sender,
Ui can just check that its left lock, parameterized over some xi, matches xi =
H(si||xi+1) before sending out `i+1 (parameterized with xi+1) to the next hop.
Thus, every user can make sure that if its right lock is unlocked, so can its left
lock, so balance security holds.

We also see that although the unlocking procedure breaks relationship
anonymity by revealing all the si, before the unlock happens, HashOnion does
have relationship anonymity. This is because the adversary cannot connect the dif-
ferent xi as long as one si remains secret — that of the one honest intermediary.
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4.4 Securing XorCake+HashOnion

We now move on to composing XorCake and HashOnion. We do so by creating
a variant of HashOnion that embeds XorCake and recognizes an inconsistency
witness. That is, this variant of HashOnion will unlock only when given a
combination of values that proves an attempt by the sender to execute a state-
mismatch attack for XorCake.

To construct such a lock, after generating the XorCake parameters, U0 creates
n λ-bit values xi recursively:

xn = on, xi = H(

XorCake parameters︷ ︸︸ ︷
ri||si||si+1 ||oi||xi+1)

where oi is a random nonce sampled uniformly from all possible λ-bit values.4
The intuition here is that xi commits to all the information U0 would give to all
hops Uj where j ≥ i.

Afterwards, the sender then uses Fanon to send (oi, xi, xi+1) , in addition to
the XorCake parameters (ri, si, si+1), to every hop i. Every hop Ui checks that
all the parameters are consistent with each other.

We next consider what will happen if the sender attempts to fool an interme-
diate hop Ui with a state-mismatch attack. Ui+1 would unlock its left lock `i+1

by giving ki+1 where H(ki+1) = si+1 but H(ri ⊕ ki+1) 6= si. This then causes Ui
to fail to unlock its left lock.

But this attempt allows Ui to generate a cryptographic witness verifiable to
anybody knowing xi: λ-bit values ki+1, ri, si, si+1, oi, xi+1 where:

H(ki+1) = si+1, H(ri ⊕ ki+1) 6= si, H(ri||si||si+1||oi||xi+1) = xi

This inconsistency witness proves that the preimage of si+1 XOR-ed with ri
does not equal the preimage of si, demonstrating that the values given to Ui are
inconsistent and that U0 is corrupt. Since Ui−1 knows xi, Ui can therefore prove
that it was a victim of a state-mismatch attack to Ui−1.

Since xi commits to all XorCake initialization states “rightwards” of Ui, Ui,
in cooperation with Ui−1, can also produce a witness that Ui−2 can verify using
xi−1. This is simply a set of λ-bit values ki+1, ri−1, si−1, ri, si,si+1, xi, oi, oi−1,
xi+1 where:

H(ki+1) = si+1, H(ri ⊕ ki+1) 6= si,

H(ri||si||si+1||oi||xi+1) = xi, H(ri−1||si−1||si||oi−1||xi) = xi−1

We can clearly extend this idea all the way back to U1 — given a witness
demonstrating a state-mismatch attack against Ui, Ui−1 can verify the witness
and generate a similar one verifiable by Ui−2, and so on. This forms the core
construction that Astrape uses to fix XorCake’s lack of balance security.

4.5 Complete construction

We now present the complete construction of Astrape, as formalized in Figure 1
within the GMHL framework. Note that we use the notation Tag[x1, . . . , xn] to
4 || denotes concatenation. In our case, it is possible to unambiguously separate
concatenated values, since we only ever concatenate λ-bit values.



Astrape: Anonymous Payment Channels with Boring Cryptography 13

function InitAS
U0

(1λ, U1, . . . , Un)
Upon invocation by U0:

generate λ-bit random numbers
{r1, . . . , rn}

xn ← random λ-bit number
for i in n− 1, . . . , 1 do

si ← H(ri ⊕ ri+1 ⊕ · · · ⊕ rn)
oi ← random λ-bit number
if i < n then

xi ←
H(ri||si||si+1||oi||xi+1)

for i in 1, . . . , n do
if i = n then

send sIn = (kn =
HSoln[rn], sn) to Un

else
send sIi =

(ri, si, si+1, xi, xi+1, oi) to Ui

function CreateAS
Ui

(sIi =

(ri, si, si+1, xi, xi+1, oi))
Upon invocation by Ui, where i < n:

if xi 6= H(ri||si||si+1||oi||xi+1)
then

abort bad initial state
if i > 0 then

wait for `i = Astrape[x̂i, ŝi] to be
created

if x̂i 6= xi or ŝi 6= si then
abort invalid left lock

return `i+1 = Astrape[xi+1, si+1]

function UnlockAS
Ui

(`i+1, s
I
i , ki+1)

Upon invocation by Ui, where i < n:
Γi ← ri||si||si+1||oi
parse sIi = (ri, si, si+1, xi, xi+1, oi)
if parse ki+1 = HSoln[κi+1] then

if H(ri ⊕ κi+i) = si then
return ki = HSoln[ri ⊕ κi+1]

else
return ki =

WSoln[κi+1, xi+1, {Γi}]
else

parse ki+1 =
WSoln[κj , xj , {Γi+1, . . . , Γj}]

return ki =
WSoln[κj , xj , {Γi, Γi+1, . . . , Γj}]

function VfAS(`, k)
parse ` = Astrape[x, s]
if parse k = HSoln[κ] then

return 1 iff H(κ) = s .
“normal” case

else if parse k =
WSoln[κ, χ, {Γi, . . . , Γj}] then

if ∃i s.t. Γi.length 6= 4λ bits then
return 0

parse Γj = rj ||sj ||sj+1||oj
if H(rj ⊕ κ) = sj then

return 0 . state good
x̂ ←

H(Γi||H(Γi+1|| . . . H(Γj ||χ)))
return 1 iff x̂ = x .

“inconsistency” case

Fig. 1: Astrape as a GMHL protocol

represent a n-tuple of values with an arbitrary “tag” that identifies the type of
value.

Initialization. In the first phase, represented as Init in GMHL, the sender U0 first
establishes communication to the n hops U1, . . . , Un, the last one of which is the
receiver. When talking to intermediaries and the recipient, U0 uses our abstract
functionality Fanon.

The sender then generates random λ-bit strings (r1, . . . , rn) and (o1, . . . , on),
deriving si = H(ri⊕ri+1⊕· · ·⊕rn) and xi = H(ri||si||si+1||oi||xi+1);xn = H(on).
She then sends to each intermediate hop Ui the tuple sIi = (ri, si, si+1, xi, xi+1, oi)
and gives the last hop Un the initial state sIn = (rn, sn) and the unlocking key
kn = HSoln[rn].

Creating the coins. We now move on to Create, where all the coins are initially
locked. U0 then sends U1 a coin encumbered with a lock represented as `1 =
Astrape[x1, s1]. When each hop Ui receives a correctly formatted coin from
its previous hop Ui−1, it sends the next hop Ui+1 a coin with a lock `i+1 =
Astrape[xi+1, si+1]. Note that Ui checks whether its left lock is consistent with
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the parameters it received from U0; this ensures that when Ui’s right lock unlocks
later, Ui can always construct a solution for its left lock. If the checks fail, Create
aborts, and all of the locks will eventually time out (see Section 3.2), returning
money to the sender.

As specified in Vf, each of these locks `i can be spent either through solving
a XorCake-type puzzle to find the preimage of si (the “normal” case) or by
presenting an inconsistency witness with a HashOnion-type witness demonstrating
xi’s commitment to inconsistent data (the “inconsistency” case). After all the
transactions with Astrape-encumbered coins are sent, Un can finally claim its
money, triggering the next phase of the protocol.

Unlocking the coins. The last step is Unlock. After receiving the final coin from
Un−1, the recipient unlocks its lock `n by providing to Vf the preimage of the
HTLC puzzle: kn = HSoln[rn] — this is the only way an honest recipient can claim
the money in a payment originating from an honest sender. Each intermediate
node Ui reacts when its right lock `i+1 is unlocked with key ki+1:

– If Ui+1 solved the HTLC puzzle with ki+1 = HSoln[κi+1], construct κi =
ri ⊕ κi+1

• If H(κi) = si, this means that there is no state-mismatch attack happen-
ing. We unlock our left lock with ki = HSoln[κi].

• Otherwise, there must be an attack happening. We construct a witness
and create a key that embeds the witness verifiable with xi. This gives
us ki = WSoln[κi+1, xi+1, {Γi}], where Γi = ri||si||si+1||oi.

– Otherwise, Ui+1 demonstrated that the sender attempted to defraud some
Uj , where j > i unlocked `i+1 by presenting an inconsistency witness ki+1 =
WSoln[κj , xj , {Γi+1, Γi+2, . . . , Γj}] .
• We can simply construct ki = WSoln[κj , xj , {Γi, Γi+1, . . . , Γj}] where
Γi = ri||si||si+1||oi. This transforms the witness verifiable with xi+1 to a
witness verifiable with xi.

Note that both cases are covered by Vf — it accepts and verifies both “normal”
unlocks with HSoln-tagged tuples, and “inconsistency” unlocks with WSoln. Thus,
even though Astrape is a composition of XorCake and HashOnion, the final
construction fully “inlines” the two into the same flow of initialization, coin
creation, and unlocking, with no separate procedure to process inconsistency
witnesses. Unlocking continues backwards towards the sender until all the locks
created in the previous step are unlocked. We have balance security — node
Ui can unlock its left lock `i if and only if node Ui+1 has unlocked `i+1, so no
intermediaries can lose any money.

Security proofs, as well as a discussion on side-channel and griefing attacks,
can be found in the extended version [12, §5].

5 Blockchain implementation

Astrape is easy to implement on blockchains with Turing-complete scripting
languages, like Ethereum, as well as layer-2 PCNs such as Raiden built on these
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blockchains, but blockchains without Turing-complete scripts involve two main
challenges.

First, these blockchains typically do not allow recursion or loops in lock scripts.
This means that we cannot directly implement the Vf function. Instead, we must
“unroll” Vf to explicitly check for witnesses to inconsistencies in the parameters
given to Ui, Ui+1, etc. So for an n-hop payment the size of every lock script
grows to Θ(n). In practice, the mean path length in the Lightning Network is
currently around 5 (see our measurements in Section 6.4), and privacy-focused
onion routing systems such as Tor or I2P typically use 3 to 5 hops. We believe
linear-length script sizes are not a significant concern for Astrape deployment.
An Astrape deployment can simply pick an arbitrary maximum for the number
of hops supported and achieve reasonable worst-case performance.

The second issue is more serious: some blockchains have so little scripting that
Astrape cannot be implemented. Astrape requires an “append-like” operation
|| that can take in two bytestrings and combine them in a collision-resistant
manner. Unfortunately, the biggest blockchain Bitcoin has disabled all string-
manipulation opcodes. Whether an implementation based solely on the 32-bit
integer arithmetic that Bitcoin uses is possible is an interesting open question.

6 Comparison with existing work

Table 1: Comparison of different PCNs

Topology AnonaEfficientb Crypto

HTLC Mesh No Yes Sig. + hash

Tumblebit Hub Yes No Custom RSA
Bolt Hub Yes Yes NIZKP

Teechain Hub Yes Yes Trusted comp.

Fulgor/Rayo Mesh Yes No ZKP
AMHLvan

c Mesh Yes Yes Homom. OWF
AMHLecd Mesh Yes Yes ECDSA,

Homom. enc.
AMHLsch Mesh Yes Yes Schnorr sigs

Blitz Mesh Weakd Yes SAesig. + hash

Astrape Mesh Yes Yes Sig. + hash

a Relationship anonymity
b Roughly comparable performance to HTLC. For ex-
ample, ZKPs requiring many orders of magnitude
more computation time than HTLC are not consid-
ered “efficient”.

c AMHL is a family of three closely related con-
structions. We denote by van, ecd, sch the “vanilla”,
ECDSA, and Schnorr implementations respectively.

d See discussion in Section 2.3.
e A “stealth-address” signature scheme; i.e., a signa-
ture scheme where any party knowing a public key
can generate unlinkably different public keys that
correspond to the same private key.

In this section, we compare As-
trape with existing PCN con-
structions. First, we compare As-
trape’s design choices and features
with that of other systems, show-
ing that it explores a novel de-
sign space. Then, we evaluate As-
trape’s concrete performance. We
compare Astrape’s performance
with that of other PCN construc-
tions, both anonymous and non-
anonymous. Finally, we explore
Astrape’s performance on a real-
world network graph from the
Lightning Network.

6.1 Design comparison

In Table 1, we compare Astrape’s
properties with those of existing
payment channel networks. We see
that except for HTLC, which does
not achieve anonymity, all pre-
vious PCN networks use crypto-
graphic constructions specialized
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Table 2: Resource usage of different PCN systems (n hops, c-byte HTLC contract,
d-byte Astrape contract); AHML variants van,ecd,sch as in Table 1

Plain Fulgor/ AMHL Astrape Astrape
HTLC Rayo (Bitcoin Cash)

Comput. time (ms) < 0.001 ≈ 200n ≈ n (van) ≈ 0.7n ≈ 0.25n
≈ 3n (ecd)
≈ 3n (sch)

Comm. size (bytes) 32n 1650000n 32 + 96n (van) 192n 192n
416 + 128n (ecd)
256 + 128n (sch)

Lock (bytes) 32 + c 32 + c 32 + c 108 + 39 · n 64 + d
Unlock, normal case (bytes) 32 32 32 (van) / 64 32 32
Unlock, worst case (bytes) 32 32 32 (van) / 64 64 + 128 · n 64 + 128 · n

for their use case. Furthermore, only more recent constructions achieve efficiency
comparable to HTLC. It is thus clear that Astrape is the first and only PCN
construction that works on all PCN topologies, achieves strong anonymity, and
performs at high efficiency, while using the same simple cryptography as HTLC.

6.2 Implementation and benchmark setup

To demonstrate the feasibility and performance of our construction, we developed
a prototype implementation in the Go programming language. We implemented
all the cryptographic constructions of Astrape inside a simulated GMHL model.
We used the libsodium library’s implementation of the ed25519 [16] signature
scheme and blake2b [3] hash function. In addition, we generated script locks in
Bitcoin Cash’s scripting language to illustrate script sizes for scripting languages
with no loops. The Bitcoin Cash scripts, written in the higher-level CashScript
language, can be found in the extended version [12, App. B].

All tests were done on a machine with a 3.2 GHz Intel Core i7 and 16 GB RAM.
Network latency is not simulated, as this is highly application dependent. These
conditions are designed to be maximally similar to those under which Fulgor [18]
and AMHL [19] were evaluated, allowing us to compare the results directly.

6.3 Resource usage

Our first set of tests compares Astrape’s resource usage to that of other PCN con-
structions. We compare both a simulation of Astrape and a concrete implementa-
tion using Bitcoin Cash’s scripting language to traditional HTLC, Fulgor/Rayo,
and all three variants of AMHL.

We summarize the results in Table 2, where n refers to the number of hops, c
to the size of an HTLC contract, and d to the size of an Astrape contract. We
copy results for Fulgor/Rayo [18] and AMHL (ECDSA) [19] from their original
sources, which use an essentially identical setup.
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Fig. 2: Overhead distribution

Computation time. We measure computation time, with communication and
other overhead ignored. The time measured is the sum of the CPU time taken by
each hop, for all steps of the algorithm. We note that by eschewing non-standard
cryptographic primitives, Astrape achieves lower computation times across the
board compared to Fulgor/Rayo and AMHL.

Communication overhead. We also measure the communication overhead of
each system. This is defined as all the data that needs to be communicated
other than the locks and their opening solutions. For example, in Astrape, this
includes all the setup information sent from U0, while in AMHL this includes
everything exchanged during the Setup, Lock, and Rel [19] phases. We see that
Astrape has by far the least communication overhead of all the anonymous PCN
constructions. Note especially the extreme overhead of the zero-knowledge proofs
used in Fulgor/Rayo.

Lock overhead. The last measure is per-coin lock overhead — the size of each
lock script (the “lock size”) and that of the information required to unlock it (the
“unlock size”). This is a very important component of a system’s resource usage,
since lock and unlock sizes directly translate into transaction fees in blockchain
cryptocurrencies. Astrape’s performance differs in two important ways.

First of all, Astrape’s Vf function is expressed in a recursive manner. In
blockchains like Bitcoin Cash that support neither recursion nor loops in their
scripting language, we must “unroll” the Vf implementation. This causes lock sizes
to be linear in the number of hops. In blockchains with general-purpose scripting
languages, though, lock size is generally constant. Second, the worst-case unlock
size is larger for Astrape. When the sender is malicious and all coins have to be
spent by invoking HashOnion, we need n parameters (Γ1, . . . , Γn) to unlock each
coin for an n-hop payment. However, despite this asymptotic disadvantage, we
believe that Astrape nevertheless offers competitive lock performance. This is
because payment routes are quite short in practice, as we will shortly see.

6.4 Statistical simulation

Finally, we simulate the performance of Astrape on the network graph of the
Lightning Network (LN).
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Setup. We set up a mainnet Lightning Network node using the lnd [1] reference
implementation. We then used the lncli describegraph command to capture the
network topology of Lightning Network in Feburary 2021. This gives us a graph
of 9566 nodes and 72164 edges. Finally, we randomly sample 5,000 pairs of nodes
in the network and calculate the shortest paths between them. This gives us a
randomly sampled set of real-life payment paths.

Path statistics. As we have previously shown, paths more than 10 hops long still
have fairly small overhead even with non-recursive lock scripts, but much longer
paths will cause rather large unlock sizes. We examine whether the graph topology
will force payments to grow too long; Figure 2a illustrates the distribution of
lengths for our 5,000 randomly selected payment paths. On average, a payment
path was 5.12 hops long, though the Lightning Network specification allows up
to 20 hops. This indicates that shortest payment paths long enough to pose
seriously ballooning worst-case overhead are practically nonexistent.

Total scalability. One important attribute we wish to explore with the LN topology
is the total scalability of the network — how fast can a PCN process transactions
as a whole.

To do so, we keep track of how many times each node appears, or is “hit”, in
our 5,000 randomly selected payment routes. On average, this is 2.99, but the vast
majority of nodes are hit only once, while a few nodes are hit hundreds of times.
The distribution of hits is plotted in Figure 2b as a log-linear histogram. We then
look at the distribution of overhead in the network for both computation and
communication. This is by calculating the total computation and communication
cost for each node “hit” by the 1,000 random payments, using values from the
Bitcoin Cash implementation.

Computation cost is plotted in Figure 2c. We see that the most heavily loaded
node in the entire network did around 2,000ms of computation to process 1,500
transactions. This indicates that the largest hubs in a PCN with the current
Lightning Network topology will be able to process around 750 transactions a
second per CPU core. Such a throughput is orders of magnitude higher than that
of typical blockchains and is within reach of many traditional payment systems.
We note that this is only the maximum throughput of a single CPU core — in
practice hubs likely have multicore machines, and with many hubs the total LN
throughput will be many times this number.

Communication cost is plotted in Figure 2d. We pessimistically assume that
all payments are settled through HashOnion. Even so, the total network load
averages to only about 3.58KB per node. The largest hubs’ total load still do
not exceed 1 MB. This illustrates that the bottleneck is actually computation,
not communication.

In summary, we see that Astrape’s worst-case asymptotic performance poses
no barriers to the total throughput of an Astrape-powered payment channel
network. PCNs can enjoy the superb scalability associated with them just as
easily with Astrape-powered privacy and security.
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7 Conclusion

First-generation payment channel networks and other trust-minimizing interme-
diarized cryptocurrency payment systems lack strong privacy and security guar-
antees. Existing research, although solving the privacy and security problems,
tend to rely on custom cryptographic primitives that cannot be easily swapped
with alternatives based on different computational hardness assumptions.

We presented Astrape, a novel PCN construction that breaks this conundrum.
Astrape is the first PCN that achieves relationship anonymity and balance
security with only black-box access to generic conventional cryptography. It
relies on a general idea of using non-anonymous post-hoc inconsistency witnesses
to achieve balance security, while avoiding any information leaks when senders
are not corrupt. This allows Astrape to avoid dealing with the zero-knowledge
verification used to achieve balance security in existing relationship-anonymous
PCNs without sacrificing any anonymity or security properties.

Furthermore, we demonstrate that Astrape is practical to deploy in the real
world. Performance is superior on average to existing private PCNs, even on
blockchains that are unsuitable for free-form smart contracts. We also showed that
Astrape achieves high scalability on a real-world payment channel network graph.
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