
Constant-Size Commitments to Polynomials and
Their Applications?

Aniket Kate1, Gregory M. Zaverucha2, and Ian Goldberg3

1 Max Planck Institute for Software Systems (MPI-SWS)
2 Certicom Research

3 University of Waterloo

Abstract. We introduce and formally define polynomial commitment
schemes, and provide two efficient constructions. A polynomial com-
mitment scheme allows a committer to commit to a polynomial with a
short string that can be used by a verifier to confirm claimed evaluations
of the committed polynomial. Although the homomorphic commitment
schemes in the literature can be used to achieve this goal, the sizes of
their commitments are linear in the degree of the committed polyno-
mial. On the other hand, polynomial commitments in our schemes are
of constant size (single elements). The overhead of opening a commit-
ment is also constant; even opening multiple evaluations requires only
a constant amount of communication overhead. Therefore, our schemes
are useful tools to reduce the communication cost in cryptographic pro-
tocols. On that front, we apply our polynomial commitment schemes to
four problems in cryptography: verifiable secret sharing, zero-knowledge
sets, credentials and content extraction signatures.

Keywords: Polynomial Commitments, Verifiable Secret Sharing, Zero-Knowledge Sets,

Credentials

1 Introduction

Commitment schemes are fundamental components of many cryptographic pro-
tocols. A commitment scheme allows a committer to publish a value, called the
commitment, which binds her to a message (binding) without revealing it (hid-
ing). Later, she may open the commitment and reveal the committed message to
a verifier, who can check that the message is consistent with the commitment.

We review three well-known ways a committer can commit to a message. Let
g and h be two random generators of a group G of prime order p. The committer
can commit to a message m ∈R Zp simply as C〈g〉(m) = gm. This scheme is
unconditionally binding, and computationally hiding under the assumption that
the discrete logarithm (DL) problem is hard in G. The second scheme, known as
a Pedersen commitment [31], is of the form C〈g,h〉(m, r) = gmhr, where r ∈R Zp.
Pedersen commitments are unconditionally hiding, and computationally binding

? An extended version of this paper is available [24]. This research was completed at
the University of Waterloo.

under the DL assumption. Third, the committer may publish H(m) or H(m||r)
for any one-way function H. In practice a collision-resistant hash function is
often used. A survey by Damg̊ard [16] covers the commitment schemes in detail.

Now consider committing to a polynomial φ(x) ∈R Zp[x], a problem mo-
tivated by verifiable secret sharing. Suppose φ(x) has degree t and coefficients
φ0, . . . , φt. We could commit to the string (φ0|φ1| . . . |φt), or to some other unam-
biguous string representation of φ(x). Based on the commitment function used,
this option may have a constant size commitment which uniquely determines
φ(x). However, it limits the options for opening the commitment; opening must
reveal the entire polynomial. This is not always suitable for cryptographic appli-
cations, most notably secret sharing, that require evaluations of the polynomial
(i.e., φ(i) for i ∈ Zp) be revealed to different parties or at different points in the
protocol without revealing the entire polynomial. One solution is to commit to
the coefficients, e.g., C = (gφ0 , . . . , gφt), which allows one to easily confirm that
an opening φ(i) for index i is consistent with C. However, this has the drawback
that the size of the commitment is now t+ 1 elements of G.

Our Contributions. The main contribution of this paper is an efficient scheme
to commit to polynomials φ(x) ∈ Zp[x] over a bilinear pairing group, called
PolyCommitDL, with the following features. The size of the commitment is con-
stant, a single group element. The committer can efficiently open the commit-
ment to any correct evaluation φ(i) along with an element called the witness,
which allows a verifier to confirm that φ(i) is indeed the evaluation at i of the
polynomial φ(x). The construction is based on an algebraic property of polyno-
mials φ(x) ∈ Zp[x] that (x−i) perfectly divides the polynomial φ(x)−φ(i) for any
i ∈ Zp. The hiding property of the scheme is based on the DL assumption. The
binding property of the main scheme is proven under the SDH assumption [6].
Using a technique similar to Pedersen commitments, we also define a stronger
commitment scheme PolyCommitPed, which achieves unconditional hiding and
computational binding under the SDH assumption.

When a set of evaluations {φ(i) : i ∈ S} is opened at the same time, what
we term batch opening, the overhead still remains a single witness element. Se-
curity of batch opening assumes that the bilinear version of the SDH (BSDH)
problem [21] is hard. Further, our schemes are homomorphic and easily random-
izable. As in other work on reducing communication costs (e.g., [8]) the global
system parameters are somewhat large (O(t) in our case). Reducing communi-
cation complexity (i.e., the number of bits transferred) is our goal, and to this
end we apply the PolyCommit schemes to the following four applications.

First we apply the PolyCommit schemes to the Feldman verifiable secret shar-
ing (VSS) protocol [18]. The new VSS protocol requires a broadcast with size
O(1) as compared to O(n) required in the best known protocols in the literature
(where n is the number of participants) [18, 31].

Second, we define and use the PolyCommit schemes to construct a relaxed
type of zero-knowledge set (ZKS) [27]. A ZKS is a commitment to a set S, such
that the committer may prove that i ∈ S, or i 6∈ S without revealing additional
information about S, not even |S|. We define nearly zero-knowledge sets as ZKS

that do not attempt to hide the size of the committed set. This is sufficient
for most applications of zero-knowledge sets, and our construction has constant
size proofs of (non)membership as compared to the best known constructions of
ZKS that require non-constant communication [12, 25]. We apply the same relax-
ation to elementary zero-knowledge databases (ZK-EDB), and achieve constant
communication there as well.

In the next application we leverage the efficiency of batch opening, by using
the PolyCommit schemes in an efficient general construction of a content ex-
traction signature (CES) scheme [35]. A CES scheme allows a signature holder
to extract signatures for subsections of the signed message. The general con-
struction, when instantiated with our commitment scheme and a general secure
signature scheme, is as efficient as the best known CES scheme, which relies on
specific properties of the RSA signature scheme.

In the special case when the CES scheme is used to authenticate a list of
attributes, the result is a digital credential with an efficient selective show op-
eration. A selective show allows the credential holder to reveal only a subset of
the attributes, with proof that the revealed attributes are signed. More precisely,
the communication cost of revealing k attributes in a credential with t attributes
is O(k), while known credential systems must communicate O(t) bits. We also
show how to efficiently prove knowledge of committed values, allowing predicates
on attributes to be proven in zero-knowledge (also with complexity O(k)).

Outline. In the rest of this section, we compare our contributions with related
work (work related to each application is included in the respective subsection).
In §2, we cover some preliminary material and describe our cryptographic as-
sumptions. §3 defines polynomial commitments and presents our constructions.
§4 is devoted to applications while §5 presents some open problems. Due to space
constraints, all security proofs are included in the extended version [24].

Related Work. Similar to our scheme, a Merkle hash tree [26] allows many
values to be committed to with a single element. Here, the leaves of a binary
tree are the messages. Each non-leaf node has the value H(L||R) where L and R
are its children, and H is a collision-resistant hash function. One can open the
commitment to an individual message by revealing the message, and a path up
the tree to the root. The opening has size O(log n) as compared to O(1) in our
scheme, where n is the total number of (leaf) elements.

Chase et al. [13] introduce mercurial commitments to construct ZKS, which
eventually led to the commitment schemes for committing to a vector of mes-
sages [12, 25]. Catalano et al. [12], and Libert and Yung [25] construct vector
commitment schemes under the name trapdoor t-mercurial commitments. The
security of both of these commitment schemes is based on SDH-like assumptions
and their system parameters have size O(t), as in our scheme. In [12], all mes-
sages must be revealed when opening, while in [25], the committer may open
a commitment to a single message. However, in [25], it is not possible to have
arbitrary indices for committed messages since each of the t committed messages

is associated with a value in the system parameters gα
j

for j ∈ [1, t]. Our scheme
have no such restriction on the domain for the indices, offering greater flexibility.

Another related primitive is an accumulator [3], which aggregates a large set
of input elements into a single element and can provide a witness as evidence that
an element is included in the accumulator. Further, it is possible to use a witness
to prove (in zero-knowledge) that the element is included in the accumulator.
Camenisch and Lysyanskaya [10] extend the concept to dynamic accumulators,
which support efficient updates. Au et al. [1] observe that a paring-based accu-
mulator by Nguyen [29] is a bounded accumulator, i.e., only a fixed number of
elements can be accumulated. They then go on to use bounded accumulators
to construct a compact e-cash scheme [2]. However, the accumulated elements
in this scheme are not ordered, which makes it inappropriate for accumulating
polynomials. While our PolyCommit schemes provide the same features as non-
dynamic accumulators, they have additional features (hiding and batch opening)
and are more general since we can commit to a polynomial instead of a set.

2 Preliminaries

In what follows, all adversaries are probabilistic polynomial time (PPT) algo-
rithms with respect to a security parameter κ expect if stated otherwise. Further,
they are static and they have to choose their nodes before protocol instances
start. A function ε(·) : N → R+ is called negligible if for all c > 0 there exists a
k0 such that ε(k) < 1/kc for all k > k0. In the rest of the paper, ε(·) will always
denote a negligible function. We use the notation e : G × G → GT to denote a
symmetric (type 1) bilinear pairing in groups of prime order p ≥ 22κ. The choice
of type 1 pairings was made to simplify presentation, however, our constructions
can easily be modified to work with pairings of types 2 and 3 as well. For details
of bilinear pairings, see the extended version of the paper.

We use the discrete logarithm (DL) assumption [26, Chap. 3], and the t-strong
Diffie-Hellman (t-SDH) assumption [6] to prove the security of the PolyCommitDL

and PolyCommitPed schemes. Security of two additional properties of the schemes
require a generalization of the t-Diffie-Hellman inversion (t-DHI) assumption [28,
5], and the bilinear version of t-SDH, the t-BSDH assumption [21].

Definition 1. Discrete logarithm (DL) Assumption. Given a generator
g of G∗, where G∗ = G or GT , and a ∈R Z∗p, for every adversary ADL,
Pr[ADL(g, ga) = a] = ε(κ).

Mitsunari, Sakai and Kasahara [28] introduced the weak Diffie-Hellman as-
sumption, which was renamed the t-DHI assumption by Boneh and Boyen [5] as
this assumption is stronger than the Diffie-Hellman assumption, especially for
large values of t. See Cheon [14] for a security analysis.

The t-DHI problem is, on input 〈g, gα, . . . , gαt〉 ∈ Gt+1 to output g1/α, or

equivalently (see [7]), gα
t+1

. In this paper, we use a generalization of the t-DHI
assumption, where A has to output a pair 〈φ(x), gφ(α)〉 ∈ Zp[x] × G such that

2κ > deg(φ) > t. We call this assumption the t-polynomial Diffie-Hellman (t-
polyDH) assumption. This assumption was implicitly made by [1, 2] to support
their claim that the accumulator of [29] is bounded.4

Definition 2. t-polynomial Diffie-Hellman (t-polyDH) Assumption. Let

α ∈R Z∗p. Given as input a (t+ 1)-tuple 〈g, gα, . . . , gαt〉 ∈ Gt+1, for every adver-

sary A
t-polyDH, the probability Pr[A

t-polyDH(g, gα, . . . , gα
t

) = 〈φ(x), gφ(α)〉] =

ε(κ) for any freely chosen φ(x) ∈ Zp[x] such that 2κ > deg(φ) > t.

Boneh and Boyen [6] defined the t-SDH assumption that is related to but stronger
than the t-DHI assumption and has exponentially many non-trivially different
solutions, all of which are acceptable.

Definition 3. t-Strong Diffie-Hellman (t-SDH) Assumption. Let α ∈R
Z∗p. Given as input a (t + 1)-tuple 〈g, gα, . . . , gαt〉 ∈ Gt+1, for every adversary

At-SDH, the probability Pr[At-SDH(g, gα, . . . , gα
t

) = 〈c, g
1

α+c 〉] = ε(κ) for any
value of c ∈ Zp\{−α}.

Security of the batch opening extension of our commitment schemes requires
the bilinear version of the t-SDH assumption, the t-BSDH assumption [21].

Definition 4. t-Bilinear Strong Diffie-Hellman (t-BSDH) Assumption.

Let α ∈R Z∗p. Given as input a (t+1)-tuple 〈g, gα, . . . , gαt〉 ∈ Gt+1, for every ad-

versary At-BSDH, the probability Pr[At-BSDH(g, gα, . . . , gα
t

) = 〈c, e(g, g)
1

α+c 〉] =
ε(κ) for any value of c ∈ Zp\{−α}.

A similar assumption was also made in [22], but with a different solution:
〈c, e(g, h)1/(α+c)〉, where h ∈R G is an additional system parameter.

3 Polynomial Commitments

In this section we provide a formal definition of a polynomial commitment
scheme, followed by two constructions. In the first construction the commit-
ments are computationally hiding, while in the second they are unconditionally
hiding. We also discuss some useful features of our constructions.

3.1 Definition

A polynomial commitment scheme consists of six algorithms: Setup, Commit,
Open, VerifyPoly, CreateWitness, and VerifyEval.

4 Note that we bound deg(φ) by 2κ as evaluations can be found for polynomials with
higher degrees in PPT using number theoretic techniques (e.g., for φ(x) = xp−1,
gφ(α) = g for any α ∈ Z∗p). In practice, deg(φ)� 2κ.

Setup(1κ, t) generates an appropriate algebraic structure G and a commitment
public-private key pair 〈PK,SK〉 to commit to a polynomial of degree ≤ t.
For simplicity, we add G to the public key PK. Setup is run by a trusted or
distributed authority. Note that SK is not required in the rest of the scheme.

Commit(PK, φ(x)) outputs a commitment C to a polynomial φ(x) for the public
key PK, and some associated decommitment information d. (In some con-
structions, d is null.)

Open(PK, C, φ(x), d) outputs the polynomial φ(x) used while creating the com-
mitment, with decommitment information d.

VerifyPoly(PK, C, φ(x), d) verifies that C is a commitment to φ(x), created with
decommitment information d. If so it outputs 1, otherwise it outputs 0.

CreateWitness(PK, φ(x), i, d) outputs 〈i, φ(i), wi〉, where wi is a witness for the
evaluation φ(i) of φ(x) at the index i and d is the decommitment information.

VerifyEval(PK, C, i, φ(i), wi) verifies that φ(i) is indeed the evaluation at the
index i of the polynomial committed in C. If so it outputs 1, otherwise it
outputs 0.

Note that it is possible to commit to a list of messages (m1, . . . ,mt+1) by
associating each to a unique key (index) k1, . . . , kt+1 in Zp, and interpolating to
find φ(x) ∈ Zp[x], such that deg(φ) ≤ t and φ(kj) = mj .

In terms of security, a malicious committer should not be able to convinc-
ingly present two different values as φ(i) with respect to C. Further, until more
than deg(φ) points are revealed, the polynomial should remain hidden. Next, we
formally define the security and correctness of a polynomial commitment.

Definition 5. (Setup, Commit, Open, VerifyPoly, CreateWitness, and VerifyEval)
is a secure polynomial commitment scheme if it satisfies the following properties.

Correctness. Let PK← Setup(1κ) and C ← Commit(PK, φ(x)). For a commit-
ment C output by Commit(PK, φ(x)), and all φ(x) ∈ Zp[x],
– the output of Open(PK, C, φ(x)) is successfully verified by VerifyPoly(PK, C,
φ(x)), and,

– any 〈i, φ(i), wi〉 output by CreateWitness(PK, φ(x), i) is successfully ver-
ified by VerifyEval(PK, C, i, φ(i), wi).

Polynomial Binding. For all adversaries A:

Pr

PK← Setup(1κ), (C, 〈φ(x), φ′(x)〉)← A(PK) :
VerifyPoly(PK, C, φ(x)) = 1 ∧

VerifyPoly(PK, C, φ′(x)) = 1 ∧ φ(x) 6= φ′(x)

 = ε(κ).

Evaluation Binding. For all adversaries A:

Pr

PK← Setup(1κ), (C, 〈i, φ(i), wi〉, 〈i, φ(i)′, w′i〉)← A(PK) :
VerifyEval(PK, C, i, φ(i), wi) = 1 ∧

VerifyEval(PK, C, i, φ(i)′, w′i) = 1 ∧ φ(i) 6= φ(i)′

 = ε(κ).

Hiding. Given 〈PK, C〉 and {〈ij , φ(ij), wφij 〉 : j ∈ [1,deg(φ)]} for a polynomial

φ(x) ∈R Zp[x] such that VerifyEval(PK, C, ij , φ(ij), wφij) = 1 for each j,

– no adversary A can determine φ(̂i) with non-negligible probability for
any unqueried index î (computational hiding) or

– no computationally unbounded adversary Â has any information about
φ(̂i) for any unqueried index î (unconditional hiding).

3.2 Construction: PolyCommitDL

We now provide an efficient construction of a polynomial commitment scheme.
PolyCommitDL is based on an algebraic property of polynomials φ(x) ∈ Zp[x]:
(x− i) perfectly divides the polynomial φ(x)− φ(i) for i ∈ Zp. In the literature,
Herzberg et al. [23] have used this technique in their share recovery scheme.

Setup(1κ, t) computes two groups G, and GT of prime order p (providing κ-bit
security) such that there exists a symmetric bilinear pairing e : G × G →
GT and for which the t-SDH assumption holds. We denote the generated
bilinear pairing group as G = 〈e,G,Gt〉. Choose a generator g ∈R G. Let
α ∈R Z∗p be SK, generated by a (possibly distributed) trusted authority.

Setup also generates a (t + 1)-tuple 〈g, gα, . . . , gαt〉 ∈ Gt+1 and outputs

PK = 〈G, g, gα, . . . , gαt〉. SK is not required in the rest of the construction.
Commit(PK, φ(x)) computes the commitment C = gφ(α) ∈ G for polynomial

φ(x) ∈ Zp[X] of degree t or less. For φ(x) =
∑deg(φ)
j=0 φjx

j , it outputs C =∏deg(φ)
j=0 (gα

j

)φj as the commitment to φ(x).
Open(PK, C, φ(x)) outputs the committed polynomial φ(x).

VerifyPoly(PK, C, φ(x)) verifies that C ?
= gφ(α). If C =

∏deg(φ)
j=0 (gα

j

)φj for φ(x) =∑deg(φ)
j=0 φjx

j the algorithm outputs 1, else it outputs 0. Note that this only
works when deg(φ) ≤ t.

CreateWitness(PK, φ(x), i) computes ψi(x) = φ(x)−φ(i)
(x−i) and outputs 〈i, φ(i), wi〉,

where the witness wi = gψi(α) is computed in a manner similar to C, above.
VerifyEval(PK, C, i, φ(i), wi) verifies that φ(i) is the evaluation at the index i of

the polynomial committed to by C. If e(C, g)
?
= e(wi, g

α/gi)e(g, g)φ(i), the
algorithm outputs 1, else it outputs 0.

VerifyEval is correct because

e(wi, g
α/gi)e(g, g)φ(i) = e(gψi(α), g(α−i))e(g, g)φ(i) = e(g, g)ψi(α)(α−i)+φ(i)

= e(g, g)φ(α) = e(C, g) as φ(x) = ψi(x)(x− i) + φ(i)

Theorem 1. PolyCommitDL is a secure polynomial commitment scheme (as de-
fined in Definition 5) provided the DL and t-SDH assumptions hold in G.

A proof is provided in the extended version. The proof of the binding property
uses the t-SDH assumption, while the proof of the hiding property uses the DL
assumption.

3.3 Construction: PolyCommitPed

PolyCommitPed is also based on the same algebraic property of φ(x) ∈ Zp[x]:
(x− i) perfectly divides the polynomial φ(x)− φ(i) for i ∈ Zp; however, it uses

an additional random polynomial φ̂(x) to achieve unconditional hiding.
The PolyCommitDL scheme is homomorphic in nature. Given PolyCommitDL

commitments Cφ1
and Cφ2

associated with polynomials φ1(x) and φ2(x) re-
spectively, one can compute the commitment Cφ for φ(x) = φ1(x) + φ2(x) as
Cφ = Cφ1

Cφ2
. Further, given two witness-tuples 〈i, φ1(i), wφ1 i〉 and 〈i, φ2(i), wφ2 i〉

at index i associated with polynomials φ1(x) and φ2(x) respectively, the corre-
sponding tuple for polynomial φ(x) can be given as 〈i, φ1(i) + φ2(i), wφ1 iwφ2 i〉.
The PolyCommitPed construction uses the homomorphic property to combine

two commitments (one to φ(x), one to φ̂(x)), although each commitment uses a
different generator. Next, we define our PolyCommitPed construction.

Setup(1κ, t) computes two groups G and GT of prime order p (providing κ-bit
security) such that there exists a symmetric bilinear pairing e : G×G→ GT
and for which the t-SDH assumption holds. We denote the generated bilinear
pairing group as G = 〈e,G,Gt〉. Choose two generators g, h ∈R G. Let α ∈R
Z∗p be SK, generated by a (possibly distributed) trusted authority. Setup also

generates a (2t+2)-tuple 〈g, gα, . . . , gαt , h, hα, . . . , hαt〉 ∈ G2t+2 and outputs

PK = 〈G, g, gα, . . . , gαt , h, hα, . . . , hαt〉. Similar to PolyCommitDL, SK is not
required by the other algorithms of the commitment scheme.

Commit(PK, φ(x)) chooses φ̂(x) ∈R Zp[x] of degree t and computes the com-

mitment C = gφ(α)hφ̂(α) ∈ G for the polynomial φ(x) ∈ Zp[X] of degree

t or less. For φ(x) =
∑deg(φ)
j=0 φjx

j and φ̂(x) =
∑deg(φ̂)
j=0 φ̂jx

j , it outputs

C =
∏deg(φ)
j=0 (gα

j

)φj
∏deg(φ̂)
j=0 (hα

j

)φ̂j as the commitment to φ(x).

Open(PK, C, φ(x), φ̂(x)) outputs the committed polynomials φ(x) and φ̂(x).

VerifyPoly(PK, C, φ(x), φ̂(x)) verifies that C ?
= gφ(α)hφ̂(α). If C =

∏deg(φ)
j=0 (gα

j

)φj∏deg(φ̂)
j=0 (hα

j

)φ̂j for φ(x) =
∑deg(φ)
j=0 φjx

j and φ̂(x) =
∑deg(φ̂)
j=0 φ̂jx

j , it outputs

1, else it outputs 0. This only works when both deg(φ) and deg(φ̂) ≤ t.
CreateWitness(PK, φ(x), φ̂(x), i) calculates ψi(x) = φ(x)−φ(i)

(x−i) and ψ̂i(x) =

φ̂(x)−φ̂(i)
(x−i) , and outputs 〈i, φ(i), φ̂(i), wi〉. Here, the witness wi = gψi(α)hψ̂i(α).

VerifyEval(PK, C, i, φ(i), φ̂(i), wi) verifies that φ(i) is the evaluation at the index

i of the polynomial committed to by C. If e(C, g)
?
= e(wi, g

α/gi)e(gφ(i)hφ̂(i), g),
the algorithm outputs 1, else it outputs 0.

In the extended version we show PolyCommitPed is correct and prove the
following security theorem.

Theorem 2. PolyCommitPed is a secure polynomial commitment scheme (as de-
fined in Definition 5) provided the t-SDH assumption holds in G.

The proof of the binding property is based on the t-SDH assumption, while the
hiding property is unconditional.

3.4 Features

We next discuss some important features of PolyCommitDL and PolyCommitPed.

Homomorphism. In §3.3, we describe that the PolyCommitDL scheme is (ad-
ditive) homomorphic in nature. In the full version we show that PolyCommitPed
is also homomorphic.

Unconditional Hiding for PolyCommitDL. When t′ < deg(φ) evaluations
have been revealed, PolyCommitDL unconditionally hides any unrevealed evalu-
ation, since the t′ + 1 evaluations 〈α, φ(α)〉, 〈i1, φ(i1)〉, . . . , 〈it′ , φ(it′)〉 are insuf-
ficient to interpolate a polynomial of degree > t′. Note that the evaluation pair
〈α, φ(α)〉 is available in an exponentiated form 〈gα, gφ(α)〉.

Indistinguishability of Commitments. When a polynomial commitment
scheme is randomized, an unbounded adversary cannot distinguish commitments
to chosen sets of key-value pairs. When committing to a set of key-value pairs
(〈k1,m1〉, . . . , 〈kt+1,mt+1〉), if indistinguishable PolyCommitDL commitments are
required, it is sufficient to set one mi to a random value. On the other hand, the
PolyCommitPed scheme is inherently randomized and can be used directly.

Trapdoor Commitment. The constructions are also trapdoor commitment
schemes, where SK = α is the trapdoor. Refer to the extended version for details.

Batch Opening. In the case when multiple evaluations in a PolyCommitDL

commitment must be opened, the opening may be batched to reduce the com-
putation and the communication of both the committer and the verifier; i.e.,
opening multiple evaluations at the same time is cheaper than opening each of
those evaluations individually using CreateWitness and VerifyEval. Let B ⊂ Zp,
|B| < t be a set of indices to be opened, for a commitment C = gφ(α) cre-
ated using PolyCommitDL. The witness for the values φ(i), for all i ∈ B, is

computed as wB = gψB(α) for the polynomial ψB(x) = φ(x)−r(x)∏
i∈B(x−i) where r(x)

is the remainder of the polynomial division φ(x)/(
∏
i∈B(x − i)); i.e., φ(x) =

ψB(x)
(∏

i∈B(x− i)
)

+ r(x) and for i ∈ B, φ(i) = r(i). We define two algo-
rithms for batch opening. The algorithm CreateWitnessBatch(PK, φ(x), B) out-
puts 〈B, r(x), wB〉 and the algorithm VerifyEvalBatch(PK, C, B, r(x), wB) out-

puts 1 if e(C, g)
?
= e(g

∏
i∈B(α−i), wB)e(g, gr(α)) holds, deg r(x) = |B|, and r(i) =

φ(i) for all i ∈ B.
In terms of security, since commitments are formed in the same way as the

Commit algorithm of PolyCommitDL and CreateWitnessBatch reveals no more
information than running the CreateWitness algorithm of PolyCommitDL for all
batch elements individually, the hiding property (Theorem 1) still holds. For
binding, an adversary should not be able to open a batch B containing an index
i, in a manner that conflicts with the value φ(i) output in an individual opening
of index i. Formally, we say that batch opening is binding if the following holds:

Pr

PK← Setup(1κ, t), (C, 〈B,wB , r(x)〉, 〈i ∈ B,wi, φ(i)〉)← A(PK) :
VerifyEvalBatch(PK, C, B,wB , r(x)) = 1 ∧

VerifyEval(PK, C, i, wi, φ(i)) = 1 ∧ φ(i) 6= r(i)

 = ε(κ).

Theorem 3. The construction of CreateWitnessBatch, VerifyEvalBatch in §3.4
is binding provided the t-BSDH assumption holds in G.

This theorem is proven in the full version. The batch construction can be mod-
ified for PolyCommitPed due to homomorphic nature of PolyCommitDL. In the
full version we also compare the overhead of various commitment schemes, when
Alice commits to t values, and then must reveal k of them. Overhead excludes
the communication cost of sending the committed values. Notably, the commu-
nication overhead of PolyCommitDL is constant when batch opening is used.

Strong Correctness. VSS schemes will require an additional property of the
PolyCommit scheme: it should not be possible to commit to a polynomial of
degree greater than t. This is called the strong correctness property.

To define strong correctness for the PolyCommit schemes is not easy, e.g.,
there are many polynomials φ′ of degree greater than t such that φ(α) = z ∈R Zp
and so gz is trivially a PolyCommitDL commitment to some polynomial of degree
t′ such that 2κ > t′ > t. To avoid this triviality, we require that an adversary
A must convince a challenger B that he knows φ with the following game. A
creates a commitment to a claimed polynomial φ′ of degree t′. B challenges A
with t′ + 1 indices I ⊂ Zp. A wins if he is able to produce {〈i, φ(i), wi)〉}i∈I
accepted by VerifyEval and that the interpolation (in exponents) of any t′ + 1
witnesses generates a degree t−1 polynomial. Similarly for PolyCommitPed. Refer
to the extended version of the paper for proof of the following theorem.

Theorem 4. PolyCommitDL and PolyCommitPed have the strong correctness prop-
erty if the t-polyDH assumption holds in G.

Practicality and Efficiency Improvements. In absence of a single trusted
party, computing Setup can be distributed. Here, SK = α is computed in a
distributed form (i.e., shared by multiple parties forming a distributed authority)
using the concept of distributed key generation [31]. PK is computed using a
distributed multiplication protocol [20]. As we do not require SK during our
protocols and as anybody can verify the correctness of PK using pairings, it is
possible to consider PK as a global reusable set, shared in many systems.

Further, the exponentiations required when committing and creating wit-
nesses can be trivially parallelized. Also, since C = gφ(α) is computed as a prod-
uct of powers (sometimes called a multi-exponentiation), we suggest using fast
exponentiation techniques [32] instead of a näıve implementation. It is also pos-
sible to precompute e(C, g) and e(g, g) for use during verification.

4 Applications

In this section, we describe applications of our commitment schemes to verifiable
secret sharing (§4.1), zero-knowledge sets and elementary databases (§4.2), and
selective disclosure of signed data and credentials (§4.3).

4.1 Verifiable Secret Sharing (VSS)

For integers n and t such that n > t ≥ 0, an (n, t)-secret sharing scheme [34, 4] is
a method used by a dealer Pd to share a secret s among a set of n participants (the
sharing Sh phase) in such a way that in the reconstruction Rec phase any subset
of t+1 or more honest participants can compute the secret s, but subsets of size
t or fewer cannot. Furthermore, in secret sharing, nodes may need a procedure to
verify the correctness of the dealt values in order to prevent malicious behaviour
by the dealer. To solve this problem, Chor et al. [15] introduced verifiability in
secret sharing, which led to the concept of verifiable secret sharing (VSS).

VSS schemes have two security requirements: secrecy and correctness.

Secrecy (VSS-S). A t-limited adversary who compromises t nodes cannot com-
pute s during the Sh phase.

Correctness (VSS-C). The reconstructed value should be equal to the shared
secret s or every honest node concludes that the dealer is malicious by out-
putting ⊥.

In the computational complexity setting, any malicious behaviour by Pd is caught
by the honest nodes in the Sh phase itself and the VSS-C property simplifies to
the following: the reconstructed value should be equal to the shared secret s.

Many VSS applications requires that broadcasts from any t+ 1 honest nodes
or any 2t+1 nodes is sufficient to reconstruct s. Therefore, along with VSS-S and
VSS-C, we mandate the correctness property that we refer as the strong correct-
ness property. Further, some VSS schemes achieve a stronger secrecy guarantee.

Strong Correctness (VSS-SC). The same unique value s is reconstructed
regardless of the subset of nodes (of size greater than 2t) chosen by the
adversary in the Rec algorithm.

Strong Secrecy (VSS-SS). The adversary who compromises t nodes have no
more information about s except what is implied by the public parameters.

Feldman [18] developed the first efficient VSS protocol, which forms the
basis of all VSS schemes defined in the literature. In the literature, the dis-
crete logarithm commitment or Pedersen commitment is used in the Feldman
VSS achieve the binding (correctness) and the hiding (secrecy) properties. Both
of these commitment schemes trivially satisfy the strong correctness (VSS-SC)
property of VSS by the fact that the size of a commitment to a polynomial
φ(x) ∈ Zp[x] is equal to deg(φ) + 1, which is O(n) (since for optimal resiliency,
deg(φ) = t = bn−12 c). However, the commitment to a polynomial has to be
broadcast to all nodes, which results in a linear-size broadcast for Feldman VSS
and their variants and a linear complexity gap between the message and the bit
complexities. Our goal is to close this gap using any of the PolyCommit schemes.
Next, we apply PolyCommitDL to existing polynomial-based VSS schemes and
reduce the broadcast message size of VSS by a linear factor, making it equal to
the message complexity. Although PolyCommitDL can be used in any univariate
polynomial-based scheme, we choose the Feldman VSS for ease of exposition.

Sh Phase
1. To share a secret s ∈ Z∗p, the dealer Pd chooses a random degree t polynomial

φ(x) =
∑t
j=0 φjx

j ∈ Zp[x] such that φ(0) = φ0 = s. It then broadcasts
C = Commit(PK, φ(x)).

2. For ` ∈ [1, n], Pd computes a share s` = φ(`), a witness w` =
CreateWitness(PK, φ(x), `) and sends 〈`, φ(`), w`〉 to node P` over a secure and
authenticated channel.

3. After receiving 〈i, φ(i), wi〉 from Pd, node Pi runs VerifyEval(PK, C, i, φ(i), wi).
If the verification fails, Pi broadcasts an accusation message against Pd.

4. If more than t nodes accuse Pd, then it is clearly faulty and is disqualified. If
not, for each accusing party P`, Pd broadcasts the corresponding share and
witness 〈`, φ(`), w`〉 such that VerifyEval holds.

5. If any of the revealed shares fails VerifyEval, Pd is disqualified and the protocol
stops. If there is no disqualification, each node P` accepts s` = φ(`).

Rec Phase
Any t+ 1 or more nodes Pi publish their accepted shares and witnesses 〈i, si, wi〉.
All t + 1 (or more) nodes verify each of the broadcast shares 〈i, φ(i), wi〉 using
VerifyEval and then interpolate the pairs 〈i, φ(i)〉 to determine the secret s = φ(0).

Fig. 1. eVSS: An efficient Feldman VSS using PolyCommitDL

Our efficient Feldman VSS (eVSS) scheme runs Setup(1κ, t) of PolyCommitDL

once, which outputs PK = 〈G, g, gα, . . . , gαt〉. Further, as we are working in the
synchronous communication model, a resiliency bound of n ≥ 2t+ 1 is required
for VSS to provide correctness against a t-limited Byzantine adversary as the
n − t honest nodes available during the Sh and Rec phases should at least be
equal to t+1 (the required threshold). In Figure 1, we present eVSS that uses the
PolyCommitDL scheme in the Feldman VSS. In the Sh and the Rec phases of the
eVSS scheme, the VSS methodology remains exactly the same as that of Feldman
VSS except here t + 1 commitments of the form gφj for φ(x) =

∑t
j=0 φjx

j are

replaced by a single polynomial commitment C = gφ(α). In addition, along with
a share si, Pd now sends a witness wi to node Pi. Overall, the eVSS protocol
needs O(1) broadcast instead of O(n) required by the Feldman VSS. In case of
multiple accusations, dealer Pd can use the batch opening feature described in
§3.4 to provide a single witness for the complete batch. Furthermore, due to the
homomorphic nature of PolyCommit, the eVSS scheme can easily converted to a
distributed key generation protocol [31].

Theorem 5. The eVSS protocol implements a synchronous VSS scheme with
the VSS-S and VSS-SC properties for n ≥ 2t + 1 provided the DL, t-SDH and
t-polyDH assumptions hold in G.

We need to prove the secrecy, correctness and strong correctness properties of
a synchronous VSS scheme. Secrecy and correctness result directly from Theo-
rem 1, while Theorem 4 provides the strong correctness property. The secrecy

provided by eVSS is computational against a t-bounded adversary, and uncon-
ditional against a t− 1 bounded adversary. Share correctness is computational.

PolyCommitDL can easily be replaced by PolyCommitPed in the above eVSS
scheme. In that case, we achieve the strong secrecy (VSS-SS) property due to
the unconditional hiding property (Theorem 2) of PolyCommitPed.

4.2 Nearly ZKSs and Nearly ZK-EDBs

Micali et al. [27] define zero-knowledge sets (ZKSs). Basically a ZKS allows a
committer to create a short commitment to a set of values S, such that he
may later efficiently prove statements of the form kj ∈ S or kj 6∈ S in zero-
knowledge. No additional information about S is revealed. Perhaps the most
challenging aspect in ZKS construction is that not even an upper bound on
|S| may be revealed. The closely related notion of zero-knowledge elementary
databases (ZK-EDB) is also defined in [27]. Loosely speaking, an EDB is a list of
key-value pairs, and a ZK-EDB allows a committer to prove that a given value
is associated with a given key with respect to a short commitment.

We argue that relaxing the requirements of a ZKS is sufficient for known
applications, and show this leads to a significantly more efficient primitive. In
particular, by not hiding |S|, the size of the proof that an element is (or is not)
in a committed set is reduced by a factor of sixteen or more, when compared to
the best known ZKS construction.

Motivation. Much of the literature on ZKSs does not consider applications [12,
13, 19, 25, 33]. In the applications of ZKSs (and ZK-EDBs) suggested in [27] the
size of the set (or DB) is not crucial to the intended security or privacy of the
application. The applications given are to improve privacy and access control
when the records of an EDB contain sensitive information about people, e.g.,
medical records. In such cases, revealing a bound on the number of records in the
database clearly does not affect the privacy of an individual whose information
is kept in the database.

Another use of ZKSs and ZK-EDBs is for committed databases [30]. In this
application, a database owner commits to the database and then proves for
every query that the response is consistent with the commitment. For many
applications the contents of the committed database must be hidden, but the size
may be revealed. An example is given in Buldas et al. [9]. Here ZK-EDBs are used
to increase the accountability of a certification authority by preventing it from
providing inconsistent responses to queries about the validity of a certificate.
Clearly, keeping the number of certificates hidden is not required. Therefore, a
weaker type of ZKS primitive that does not hide the size of the set will suffice for
most practical applications of ZKSs. We call a ZKS that may leak information
about the size of the set a nearly ZKS. Similarly, a nearly ZK-EDB is a ZK-EDB
that may leak information about the number of records it contains.

Note that an accumulator also represents a set of values with proofs of mem-
bership, and some even allow proofs of non-membership (e.g., see [17]). They do

SetupZKS(1κ, t) outputs PK = Setup(1κ, t). t is an upper bound on the size of the
set which may be committed.

CommitZKS(PK, S) requires |S| ≤ t. Define φ(x) =
∏
kj∈S(x− kj) ∈ Zp[x]. Out-

put C = Commit(PK, φ(x)). Let φ̂(x) ∈ Zp[x] be the random degree t polyno-
mial chosen in PolyCommitPed.

QueryZKS(PK, C, kj) allows the committer to create a proof that either kj ∈ S or
kj 6∈ S. Compute 〈kj , φ(kj), φ̂(kj), wj〉 = CreateWitness(PK, φ(x), φ̂(x), kj).
(i) If kj ∈ S, output πSj = (kj , wj , φ̂(kj),⊥).

(ii) If kj 6∈ S, create zj = gφ(kj)hφ̂(kj) and a ZK proof of knowledge of φ(kj)

and φ̂(kj) in zj = gφ(kj)hφ̂(kj). Let γj = 〈zj ,ZK proof〉. Output πSj =
(kj , wj ,⊥, γj).

VerifyZKS(PK, C, πSj) parses πSj as (kj , wj , φ̂(kj), γj).

(i) If φ̂(kj) 6= ⊥, then kj ∈ S. Output 1 if VerifyEval(PK, C, kj , 0, φ̂(kj), wj) =
1.

(ii) If γj 6= ⊥, then kj 6∈ S. Parse γj as 〈zj ,ZK proof〉. If e(C, g)
?
=

e(wj , g
α−kj)e(zj , g), and the ZK proof of knowledge of zj is valid, out-

put 1. Output 0 if either check fails.

Fig. 2. A nearly ZKS scheme based on PolyCommitPed.

not however, guarantee hiding (the ZK property), in [17] after seeing responses
to t non-membership queries we may recover the entire accumulated set.

Construction of a Nearly ZKS. This construction (Figure 2) will use
PolyCommitPed, and allows us to commit to S ⊂ Zp such that |S| ≤ t. The
basic idea is to commit to a polynomial φ, such that φ(kj) = 0 for kj ∈ S, and
φ(kj) 6= 0 for kj 6∈ S. Our construction relies on a ZK proof that proves φ(kj) 6= 0
without revealing φ(kj) to maintain privacy for queries when kj 6∈ S. Although a
construction based on PolyCommitDL is also possible, we choose PolyCommitPed
as the required ZK proof is simpler in the latter case. For convenience we describe
our protocols assuming the ZK proof is non-interactive, however, an interactive
ZK proof may be used as well.

A security definition and proof are provided in the full version. The ZK proof
of knowledge may be implemented using any secure ZK proof system allowing
proof of knowledge of a discrete logarithm (see [11] for examples).

Construction of a Nearly ZK-EDB. This construction (Figure 3) makes
use of the above nearly ZKS construction and PolyCommitDL. Let D = (K,V) ⊂
Ztp × Ztp be a list of key-value pairs that will define the database (K and V are
ordered lists of equal length such that the value mj ∈ V corresponds to the
key kj ∈ K). The values may repeat, but the keys must be distinct. We write
D(kj) to denote the value associated to key kj (if kj 6∈ K, then D(kj) = ⊥). The
underlying idea of our construction is to commit to the keys using our nearly
ZKS, and also commit to φ, such that φ(kj) = mj , using PolyCommitDL, since it

SetupEDB(1κ, t) runs SetupZKS(1κ, t), and outputs PK.
CommitEDB(PK, D = (K,V)) sets C1 = CommitZKS(PK,K). It then interpo-

lates the t (or fewer) points (kj ,mj) ∈ D, and one or more random points
(kr,mr) ∈R Zp × Zp to get a polynomial φ2(x) ∈ Zp[x], assured to be of
degree t. Set C2 = Commit(PK, φ2(x)) and output E = (C1, C2).

QueryEDB(PK, E , kj) parses E as (C1, C2).
(i) If kj ∈ K, compute πSj = QueryZKS(PK, C1, kj) to show that kj ∈ K and
〈kj ,mj , wmj 〉 = CreateWitness(PK, φ2(x), kj) to show that D(kj) = mj .
Output πDj = (πSi,mj , wmj).

(ii) If kj 6∈ K, we show that kj 6∈ K, set πSj = QueryZKS(PK, C1, kj). Output
πDj = (πSj ,⊥,⊥).

VerifyEDB(PK, E , πDj) parses πDj as (πSj ,mj , wmj) and E as (C1, C2).
(i) If mj 6= ⊥, then kj ∈ K, output (kj ,mj) if VerifyZKS(PK, C1, πSj) = 1

and VerifyEval(PK, C2, kj , mj , wmj) = 1.
(ii) If mj = ⊥, then kj 6∈ K, output 1 if VerifyZKS(PK, C1, πSj) = 1.

Fig. 3. A nearly ZK-EDB scheme constructed using our nearly ZKS construction (Fig-
ure 2) and PolyCommitDL.

is sufficient for security and more efficient. The reason for using the nearly ZKS is
to respond to queries when k 6∈ D without revealing any additional information.

Efficiency of our nearly ZKS and ZK-EDBs. The size of the commitment
is a single group element for a nearly ZKS, or two elements for a nearly ZK-
EDB. Proof that kj ∈ S, consists of two group elements, while proof that kj 6∈ S
consists of about five group elements (when ZK proofs are implemented using
a standard three-move ZK protocol, made non-interactive with the Fiat-Shamir
heuristic). The proof sizes for our nearly ZK-EDB construction are three and
about five group elements (respectively).

The ZK-EDB in the literature with the shortest proofs is that of Libert and
Yung [25] (based on their ZKS construction). Asymptotically, (non)membership
proofs are O(κ/ log(t)) bits, where κ is a security parameter, and t is the size of
the system parameters. For the parameter choices given [25], proof sizes range
from 80–220 group elements. The computation of their scheme and ours is nearly
equal. Therefore, using nearly ZK-EDBs in the place of ZK-EDBs reduces com-
munication costs by at least a factor of sixteen.

4.3 Credentials and Selective Disclosure of Signed Data

In this section we briefly describe two applications of the PolyCommit schemes,
and we will show how polynomial commitments can reduce communication costs.
Both applications are based on the following idea. Suppose Alice has a list of
values (m1, . . . ,mt), which will be signed by Trent. If Trent signs the concatena-
tion, then Alice must reveal all mi to allow Bob to verify the signature. However,
if Trent signs C = Commit(PK, φ(x)) where φ(i) = mi, then Alice may allow Bob
to verify that Trent has signed mi without revealing the other mj . Bob verifies

the signature on C, and Alice produces a witness to prove that C opens to mi at
position i, allowing Alice to convince Bob that Trent signed mi.

Content Extraction Signatures. If (m1, . . . ,mt) are parts of a document,
then signing a polynomial commitment is a content extraction signature (CES)
scheme. Steinfeld et al. [35] introduce CES and give a generic construction of CES
signatures. The scheme requires a standard commitment scheme, which is then
used to commit to each of the t sub-messages (m1, . . . ,mt) individually, forming
a vector of commitments, which is signed. The scheme is secure, provided the
signature scheme is secure, and the commitment scheme is hiding and binding.

Since both PolyCommit schemes are hiding and binding, and allow a list
of messages to be committed, they can be used in the general construction of
Steinfeld et al. Along with the commitment, Trent should also sign t so that Bob
knows that only indices {1, . . . , t} correspond to valid sub-messages. The new
scheme is nearly as communication efficient as a specific scheme in [35] which
has the lowest communication cost. The latter, however, depends on specific
properties of the RSA signature scheme and is secure in the random oracle model.
Using a polynomial commitment scheme gives an efficient generic construction.
Therefore, efficient standard model CES schemes are possible by combining any
of the PolyCommit schemes with a signature scheme secure in the standard model.

Pseudonymous Credentials. If (m1, . . . ,mt) are attributes about Alice, and
Trent is an identity provider, then the signature Alice holds on C is a digital
credential that allows Alice to reveal only as much information as is necessary
to complete an online transaction. Here, we create C using PolyCommitDL, as
batched openings are efficient for PolyCommitDL. Disclosing a single mi requires
Alice to transmit (C, SignTrent(C), 〈i,mi, wi〉), the size of which is independent of
t. If Alice reveals a subset of the attributes, a single witness may be used to reduce
communication even further using batch opening (described in §3.4). Further, if
Trent signs multiple commitments to the same attributes (but includes an extra
randomized attribute), Alice may present a different commitment to the same
verifier unlinkably.

For many interesting applications of credentials, selective show is insufficient
because Alice would like to prove something about mi (e.g., mi < 1990) without
revealing mi. Alice may prove knowledge of a nonzero committed value φ(i)
without revealing it, and compose this proof with other proofs about mi using
standard ZK proof techniques for proving knowledge of, relations between or the
length of discrete logarithms [11]. Since the communication costs per attribute of
proving knowledge of a committed value are constant, if k attributes are involved
in showing a credential, the complexity of the show will be O(k). In existing
schemes the communication is O(t) where t is the total number of attributes in
the credential. Further details of this application are given in the full version of
this paper.

5 Open Problems

Finally, we list a few open problems related to polynomial commitment schemes.
1. Is it possible to construct efficient polynomial commitment schemes under
weaker assumptions? 2. What other protocols does PolyCommit improve? (For
example, can PolyCommit reduce the communication of asynchronous VSS pro-
tocols or verifiable shuffles?) 3. We have mainly focused on the communication
costs, but our construction asks for nontrivial computation. Is it possible to
reduce computation cost as well?

Acknowledgements. We thank the anonymous reviewers for providing many
helpful comments, and thank Benoit Libert for sending us a preprint of [25].
We gratefully acknowledge the financial support of NSERC, MITACS, and the
David R. Cheriton Graduate Scholarship program.

References

1. M. H. Au, Q. Wu, W. Susilo, and Y. Mu. Compact E-Cash from Bounded Accu-
mulator. In Proceedings of CT-RSA’07, pages 178–195, 2007.

2. M.H. Au, W. Susilo, and Y. Mu. Practical anonymous divisible e-cash from
bounded accumulators. In Proceedings of FC’08, pages 287–301, 2008.

3. J.C. Benaloh and M. de Mare. One-way accumulators: A decentralized alternative
to digital signatures (extended abstract). In Proceedings of EUROCRYPT’93,
pages 274–285. Springer, 1993.

4. G.R. Blakley. Safeguarding cryptographic keys. In Proceedings of the National
Computer Conference, pages 313–317, 1979.

5. D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In Proceedings of EUROCRYPT’04, pages 223–238,
2004.

6. D. Boneh and X. Boyen. Short Signatures Without Random Oracles. In Proceedings
of EUROCRYPT’04, pages 56–73. Springer, 2004.

7. D. Boneh, X. Boyen, and E.J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In Eurocrypt, volume 3494, pages 440–456. Springer, 2005.

8. D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with
short ciphertexts and private keys. In Proceedings of CRYPTO’05, pages 258–275.
Springer, 2005.

9. A. Buldas, P. Laud, and H. Lipmaa. Eliminating Counterevidence with Appli-
cations to Accountable Certificate Management. Journal of Computer Security,
10(3):273–296, 2002.

10. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In Proceedings of CRYPTO’02, pages
61–76. Springer, 2002.

11. J. Camenisch and M. Stadler. Proof systems for general statements about discrete
logarithms. Technical report, 1997. 260, Dept. of Computer Science, ETH Zurich.

12. D. Catalano, D. Fiore, and M. Messina. Zero-knowledge sets with short proofs. In
Proceedings of EUROCRYPT’08, pages 433–450. Springer, 2008.

13. M. Chase, A. Healy, A. Lysyanskaya, T. Malkin, and L. Reyzin. Mercurial com-
mitments with applications to zero-knowledge sets. In Proceedings of EURO-
CRYPT’05, pages 422–439. Springer, 2005.

14. J.H. Cheon. Security analysis of the strong Diffie-Hellman problem. In Proceedings
of EUROCRYPT’06, pages 1–13. Springer, 2006.

15. B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable Secret Sharing
and Achieving Simultaneity in the Presence of Faults (Extended Abstract). In
Proceedings of FOCS’85, pages 383–395, 1985.

16. I. Damg̊ard. Commitment schemes and zero-knowledge protocols. In Lectures on
Data Security, pages 63–86. Springer, 1999.

17. I. Damg̊ard and N. Triandopoulos. Supporting non-membership proofs with
bilinear-map accumulators. 2008. Cryptology ePrint Archive: Report 2008/538.

18. P. Feldman. A Practical Scheme for Non-interactive Verifiable Secret Sharing. In
Proceedings of FOCS’87, pages 427–437, 1987.

19. R. Gennaro and S. Micali. Independent zero-knowledge sets. In Proceedings of
ICALP’06, pages 34–45. Springer, 2006.

20. R. Gennaro, M.O. Rabin, and T. Rabin. Simplified VSS and Fast-Track Multiparty
Computations with Applications to Threshold Cryptography. In Proceedings of
PODC’98, pages 101–111. ACM Press, 1998.

21. V. Goyal. Reducing Trust in the PKG in Identity Based Cryptosystems. In Ad-
vances in Cryptology—CRYPTO’07, pages 430–447, 2007.

22. F. Guo, Y. Mu, and Z. Chen. Identity-Based Encryption: How to Decrypt Multiple
Ciphertexts Using a Single Decryption Key. In Proceedings of Pairing’07, pages
392–406. Springer, 2007.

23. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive Secret Sharing
Or: How to Cope With Perpetual Leakage. In Proceedings of CRYPTO’95, pages
339–352, 1995.

24. A. Kate, G. Zaverucha, and I. Goldberg. Polynomial commitments. Technical re-
port, 2010. CACR 2010-10, Centre for Applied Cryptographic Research, University
of Waterloo.

25. B. Libert and M. Yung. Concise Mercurial Vector Commitments and Independent
Zero-Knowledge Sets with Short Proofs. In TCC’10, pages 499–517, 2010.

26. A. Menezes, P. Van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1st edition, 1997.

27. S. Micali, M. Rabin, and J. Kilian. Zero-knowledge sets. In Proceedings of
FOCS’03, pages 80–91. IEEE, 2003.

28. S. Mitsunari, R. Sakai, and M. Kasahara. A New Traitor Tracing. IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer Sciences,
E85-A(2):481–484, 2002.

29. L. Nguyen. Accumulators from bilinear pairings and applications. In Proceedings
of CT-RSA, pages 275–292, 2005.

30. R. Ostrovsky, C. Rackoff, and A. Smith. Efficient Consistency Proofs for Gen-
eralized Queries on a Committed Database. In Proceedings of ICALP’04, pages
1041–1053, 2004.

31. T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In Proceedings of CRYPTO’91, pages 129–140. Springer, 1991.

32. N. Pippenger. On the evaluation of powers and related problems. In IEEE
SFCS(FOCS)’76, pages 258–263, 1976.

33. M. Prabhakaran and R. Xue. Statistically Hiding Sets. In Proceedings of CT-RSA,
pages 100–116. Springer, 2009.

34. A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.
35. R. Steinfeld, L. Bull, and Y. Zheng. Content extraction signatures. In Proceedings

of ICISC’01, pages 285–304. Springer, 2002.

