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Abstract

Although distributed key generation (DKG) has been

studied for some time, it has never been examined outside

of the synchronous setting. We present the first realistic

DKG architecture for use over the Internet. We propose

a practical system model and define an efficient verifiable

secret sharing scheme in it. We observe the necessity of

Byzantine agreement for asynchronous DKG and analyze the

difficulty of using a randomized protocol for it. Using our

verifiable secret sharing scheme and a leader-based agree-

ment protocol, we then design a DKG protocol for public-

key cryptography. Finally, along with traditional proactive

security, we also introduce group modification primitives in

our system.

1. Introduction

A distributed key generation (DKG) protocol is a funda-

mental building block of both symmetric and asymmetric

threshold cryptography. In essence, an (n, t)-DKG protocol

[1] allows a set of n nodes to collectively generate a secret

with its shares spread over the nodes such that any subset of

size greater than a threshold t can reveal or use the shared

secret, while smaller subsets do not have any knowledge

about it. Unlike secret sharing [2], [3], where a dealer

generates a secret and distributes its shares among the nodes,

DKG requires no trusted party.

In symmetric-key cryptography, DKGs are used to de-

sign distributed key distribution centres [4]. In public-

key cryptography (PKC), they are essential for dealerless

threshold public-key encryption and signature schemes [5]

and for truly distributed private-key generation in identity-

based cryptography (IBC) [6]. In threshold encryption and

signature schemes, DKG tackles the problem of single point

of failure. In IBC, it also mitigates the key escrow issue

and becomes important when IBC is used in practical sys-

tems, outside the usual organizational settings. It is also an

important primitive in distributed pseudo-random functions

[4], which are useful in designing distributed coin tossing

algorithms [7] and random oracles [8].

As a whole, numerous applications based on DKG have

been proposed (see [9] and references therein). However,

most of them assume a synchronous communication model

or a broadcast channel. The systems issues to be considered

while realizing DKGs over the Internet have largely been

ignored and there is no implementation available yet. This

need for a practical DKG forms the motivation of this work.

Verifiable Secret Sharing—VSS. In secret sharing, clients

need to verify a consistent dealing (integrity) to prevent

malicious behaviour by the dealer. A scheme with such a ver-

ifiability property is known as verifiable secret sharing[10].

Feldman [11] developed the first efficient and non-interactive

VSS protocol. He used a commitment with computational

security and unconditional share integrity to achieve it. Ped-

ersen presented another commitment [1] with unconditional

security but computational integrity. In computational PKC,

with adversarial access to the public key, unconditional

security for the secret is impossible. Consequently, with

simplicity and efficiency, Feldman’s commitments form the

basis for many VSSs, including ours.

Proactive VSS. The most common attacks on security

mechanisms are system attacks, where the system’s crypto-

graphic keys are directly exposed, rather than cryptanalytic

attacks. Due to the endless supply of security flaws in almost

all existing software, these system attacks are often easy

to implement. Threshold cryptography enhances security

against system break-ins, but its effect is limited. Given

sufficient time, a mobile attacker can break into system

nodes one by one (gradual break-in) and eventually compro-

mise the security of the whole system [12]. Proactive secret

sharing [13], which combines distributed trust with periodic

share renewal, protects a system against these gradual break-

ins. Here, the system’s time is divided into phases. At the

start of each phase, nodes’ secret shares are renewed such

that new shares are independent of previous ones, except for

the fact that they interpolate to the same secret key. With an

assumption that the adversary may corrupt at most t nodes

in each phase, the system now becomes secure.

Asynchronous VSS. Although the literature for VSS

has been vast, asynchronous VSS has not yet received the

required attention. Canetti and Rabin [14] developed the

first complete VSS scheme with unconditional security in

the asynchronous communication model having no bounds

on message transfer delays or processor speeds. However,

this scheme and its successors [15], [16], due to their

Ω(n5) communication complexities (bit length of messages



transferred), are prohibitively expensive for any realistic

use. Compromising the unconditional security assumption,

Cachin et al. (AVSS) [17], Zhou et al. (APSS) [18], and

more recently Schultz et al. (MPSS) [19] suggested more

practical asynchronous VSS schemes. APSS severely re-

stricts t with its Ω
((

n
t

))
message complexity (number of

messages transferred), and is thus very ineffective in general.

A bivariate polynomial based AVSS and a univariate polyno-

mial based MPSS have the same reasonable communication

complexity of O(n3). However, security is preserved in

MPSS only when sets of nodes used in two consecutive

phases are disjoint; this is not ideal in many scenarios. On

other hand, AVSS assimilates a bivariate polynomial into

Bracha’s reliable broadcast [20] and can provide complete

flexibility with the sets used without hampering the security.

In an asynchronous VSS protocol with reliability guarantees,

any two nodes need to verify the dealer’s commitment of

size Ω(n) with each other to achieve consistency; thus, a

protocol with o(n3) communication complexity does not

seem to be possible and AVSS, with optimal communication

complexity, forms the basis for our VSS.

Contributions. In this paper, we design the first practical

DKG protocol for use over the Internet.

• As our first contribution, we define a realistic system

model over the Internet (§2). We combine the standard

Byzantine adversary with crash-recovery and network

failures in an asynchronous setting. We analyze the

asynchronous versus partially synchronous dichotomy

for the Internet and justify the choice of treating crashes

and network failures separately.

• We present a VSS scheme (HybridVSS) that works in

our system model (§3), investigate the necessity of an

agreement scheme for asynchronous DKG, and define

a practical DKG protocol (§4). We use a leader-based

agreement scheme in our DKG, as we observe a few

pragmatic and efficiency related issues with the usually

suggested randomized agreement schemes.

• Along with proactive security (§5), observing the im-

portance of group modifications for a long-term system

sustainability, we also devise protocols for group mod-

ification agreement, node addition, node removal and

threshold and crash-limit modification (§6).

• Finally, we touch upon the system design and discuss

the system’s resilience against denial-of-service (DoS)

attacks and Sybil attacks (§7).

2. Assumptions and System Model

2.1. Communication Model

Our DKG protocol should be deployable over the Internet.

The expected message-transfer delay and the expected clock

offset there (a few seconds, in general) is significantly

smaller than the required timespan of a system phase (a

few days). With such an enormous difference, a failure of

the network to deliver a message within a fixed time bound

can be treated as a failure of the sender; this may lead to

a retransmission of the message after appropriate timeout

signals. As this is possible without any significant loss in the

synchrony of the system, the asynchronous communication

assumption seems to be unnecessarily pessimistic here. It

is tempting to treat the Internet as a partially synchronous

network (bounded message delivery delays and processor

speeds, but the bounds are unknown and eventual [21]) and

develop more efficient protocols using well-known message

delivery time bounds and system run-time assumptions.

However, deciding these time bounds correctly is a diffi-

cult problem to solve. Further, even if it is possible to de-

termine tight bounds between the optimistic and pessimistic

cases, there is a considerable difference between the selected

time bounds and the usual computation and communication

time. Protocols explicitly based on synchronous or partially

synchronous assumptions invariably use these time bounds

in their definitions, while those based on the asynchronous

assumption solely use numbers and types of messages. A

real-world adversary, with knowledge of any time bounds

used, can always slow down the protocols by delaying its

messages to the verge of the time bounds. In asynchronous

protocols, although it is assumed that the adversary manages

the communication channels and can delay messages as it

wishes, a real-world adversary cannot control communica-

tion channels for all the honest nodes. It is practical to

assume that network links between most of the honest nodes

are perfect. Consequently, even if the adversary delays its

messages, an asynchronous protocol completes without any

delay with honest nodes communicating promptly. Thus, the

asynchrony assumption may increase message complexity

or the latency degree (number of communication rounds),

but in practice does not increase the actual execution time.

Observing this, we use the asynchronous communication

assumption for our protocols.

Weak Synchrony (only for liveness). For liveness (the

protocol eventually terminates), but not safety (the protocol

does not fail or produce incorrect results), we need a weak

synchrony assumption. Otherwise, we could implement con-

sensus in an asynchronous system, which is impossible [22].

We use a weak synchrony assumption by Castro and Liskov

[23] to achieve liveness. Let delay(t) be the time between

the moment t when a message is sent for the first time

and the moment when it is received by its destination. The

sender keeps retransmitting the message until it is received

correctly. We assume that delay(t) does not grow faster than

t indefinitely. Assuming that network faults are eventually

repaired and DoS attacks eventually stop, this assumption

seems to be valid in practice. It is also strictly weaker than

the partially synchronous communication assumption.



2.2. Byzantine Adversary, Crash-Recoveries and

Link Failures

Most of the distributed computing protocols in the lit-

erature assume a t-limited Byzantine adversary, who com-

promises up to t out of n system nodes and makes them

behave arbitrarily. We aim at proactive security for our

protocols, where the t-limited mobile Byzantine adversary

can change its choice of t nodes as time progresses. Here,

a node compromised during a phase remains unused, after

recovery, for the remainder of that phase as its share is

already compromised. Any intra-phase share modification

for a recovered node leads to intra-phase share modification

to all the nodes, which is unacceptable in general.

This does not model failures over the Internet in the best

way. Other than malicious attacks leading to compromise,

some nodes (say f of them) may just crash silently without

showing arbitrary behaviours or get disconnected from the

rest of the network due to network failures or partitioning.

Importantly, secrets at these f nodes is not available to the

adversary and modelling them as Byzantine failures not only

leads to sub-optimal resilience of n ≥ 3(t + f) + 1 instead

of n ≥ 3t+2f +1, but it also increases the communication

complexity with added security requirements (t + f instead

of t). Keeping such nodes inactive, after their recovery, until

the start of next phase is not ideal. This prompts us to use

a hybrid model.

Our system adopts the hybrid model by Backes and

Cachin [24], but with a modification to accommodate broken

links. From any honest node’s perspective, a crashed node

behaves similarly to a node whose link with it is broken

and we model link failures in the form of crashes. For every

broken link between two nodes, we assume that at least

one of two nodes is among the list of currently crashed

nodes.1 Further, all non-Byzantine nodes may crash and

recover repeatedly with a maximum f crashed nodes at

any instant and a recovering honest node recovers from a

well-defined state using, for example, a read-only memory.

We also assume that the adversary delivers all the messages

between two uncrashed nodes. We drop the requirement of

proactive security at this point and pick it back up in §5.

Formally, we consider an asynchronous network of n ≥
3t + 2f + 1 nodes P1, . . . , Pn of which the adversary may

corrupt up to t nodes during its existence and may crash

another f nodes at any time. For f = 0, 3t + 1 nodes are

required as a differentiation between slow honest nodes and

Byzantine nodes is not possible in an asynchronous network,

while for t = 0, 2f + 1 nodes are mandatory to achieve

consistency. At least n − t − f nodes, which are not in the

crashed state at the end of a protocol, are termed finally up

nodes.

1. A node that is crashed means that some of its links are down, not
necessarily that they all are.

2.3. Complexity and Cryptographic Assumptions

Our adversary is computationally bounded with a security

parameter κ. A function ǫ(·) is called negligible if for all

c > 0 there exists a κ0 such that ǫ(k) < 1/κc for all κ > κ0.

An unbounded number of crashes can cause the protocol

execution time to be unbounded. We restrict the adversary

by function d(κ) that represents the maximum number of

crashes that the adversary is allowed to perform during

its lifetime. As we consider a computationally bounded

adversary, we aim at bounding protocol complexities by

a polynomial in the adversary’s running time. Similar to

Backes and Cachin, we expect that the communication

complexities of our protocols are bounded by the notion of

d-uniformly bounded statistics. [24, Def. 1]

The infeasibility of the adversary to compute discrete log-

arithms modulo large primes forms our main cryptographic

assumption. We consider a prime p such that there exists

a κ-bit prime q and q|(p − 1). Let G be a multiplicative

subgroup of Z
∗
p of order q and let g ∈ G be a generator.

For every probabilistic polynomial time algorithm A and

x ∈ [1, q], probability Pr(A(p, q, g, gx) = x) is negligible.

The adversary is also static and rushing. It has to choose

its t compromisable nodes before a protocol run.2 However,

it can wait for the messages of the uncorrupted players to

be transmitted, then decide on its computation and commu-

nication for that round, and still get its messages delivered

to the honest parties on time.

We use a PKI infrastructure in the form of a PKI hierarchy

with an external certifying authority (CA) to achieve authen-

ticated and confidential communication with TLS links, and

message authentication with any digital signature scheme

secure against adaptive chosen-message attack . Each node

also has a unique identifying index. We assume that indices

and public keys for all nodes are publicly available in the

form of certificates. It is possible to achieve similar security

guarantees in a symmetric-key setting with long-term keys.

3. VSS for the Hybrid Model—HybridVSS

VSS is the most important part of any distributed key

generation environment. Our VSS protocol modifies the

AVSS protocol [17] for our hybrid model. We include

recovery messages similar to those from the reliable broad-

cast protocol by Backes and Cachin [24]. We achieve a

constant-factor reduction in the protocol complexities using

symmetric bivariate polynomials. Further, as described in §1,

we use the simpler commitment scheme by Feldman [11]

rather than Pedersen’s commitment scheme [1].

2. As we use Feldman’s VSS, we do not prove security against an
adaptive adversary. However, as claimed by Feldman [11, Sec. 9.3],
although the use of simulation-based security proof did not work out for an
adaptive adversary, the VSS scheme does seem secure against an adaptive
attack. This is further supported by the fact that there has been no known
adaptive attack for the last twenty years.



Protocol Description. Our VSS protocol is composed

of a sharing protocol (Sh) and a reconstruction protocol

(Rec). In protocol Sh, a dealer Pd upon receiving a

(Pd, τ, in, share, s) message, shares a secret s, where a

counter τ and the dealer identity Pd forms a unique session

identifier. Node Pi finishes the Sh protocol by outputting

a (Pd, τ, out, shared, C, si) message, where C is the com-

mitment and si is its secret share. Any time after that, upon

receiving a message (Pd, τ, in, reconstruct), Pi starts the

Rec protocol. The Rec protocol terminates for a node Pi

when Pi outputs a message (Pd, τ, out, reconstructed, zi),
where zi is Pi’s reconstructed value of the secret s.

Definition 3.1: In session (Pd, τ), protocol VSS in our

hybrid model (HybridVSS) having an asynchronous net-

work of n ≥ 3t + 2f + 1 nodes with a t-limited Byzantine

adversary and f -limited crashes and network failures satis-

fies following conditions:

Liveness: If the dealer Pd is honest and finally up in the

sharing stage of session (Pd, τ), then all honest finally

up nodes complete protocol Sh.

Agreement: If some honest node completes protocol Sh of

session (Pd, τ), then all honest finally up nodes will

eventually complete protocol Sh in session (Pd, τ). If

all honest finally up nodes subsequently start protocol

Rec for session (Pd, τ), then all honest finally up nodes

will finish protocol Rec in session (Pd, τ).
Consistency: Once t + 1 honest nodes complete protocol

Sh for session (Pd, τ), then there exists a fixed value

z such that

• if the dealer is honest and has shared secret s in

session (Pd, τ), then z = s, and

• if an honest node Pi reconstructs zi in session

(Pd, τ), then zi = z.

Privacy: If an honest dealer has shared secret s in ses-

sion (Pd, τ) and no honest node has started the Rec

protocol, then, except with negligible probability, the

adversary cannot compute the shared secret s.

Efficiency: The communication complexity for any instance

of HybridVSS is d-uniformly bounded.

We assume that messages from all the honest and uncrashed

nodes are delivered by the adversary.

Figure 1 describes the Sh protocol for HybridVSS. The

Rec protocol is same as reconstruction stage of AVSS and

we refer readers to [25] for its description. We use pseudo-

code notation and include a special condition upon to define

actions based on messages received from other nodes or

system events. C is a matrix of commitment entries and eC

and rC are Pi’s associated counters for echo and ready

messages, respectively. In order to facilitate recovery of the

crashed nodes, each node Pi stores all outgoing messages

along with their intended recipients in a set B. Bℓ indicates

the subset of B intended for the node Pℓ. Counters c and cℓ

keep track of the numbers of overall help requests and help

Sh protocol for node Pi and session (Pd, τ)
upon initialization:

for all C do
AC ← ∅; eC ← 0; rC ← 0
c← 0; cℓ ← 0 for all ℓ ∈ [1, n]

upon a message (Pd, τ, in, share, s): /* only Pd */

choose a random symmetric bivariate polynomial

f(x, y) =
∑t

j,ℓ=0
fjℓx

jyℓ ∈ Zq[x, y]
such that f00 = s and fjℓ = fℓj for j, ℓ ∈ [0, t]
C ← Cjℓ where Cjℓ = gfjℓ for j, ℓ ∈ [0, t]
for all j ∈ [1, n] do

aj(y)← f(j, y)
send the message (Pd, τ, send, C, aj) to Pj

upon a message (Pd, τ, send, C, a) from Pd (first time):

if verify-poly(C, i, a) then
for all j ∈ [1, n] do

send the message (Pd, τ, echo, C, a(j)) to Pj

upon a message (Pd, τ, echo, C, α) from Pm (first time):

if verify-point(C, i, m, α) then
AC ← AC ∪ {(m, α)}; eC ← eC + 1
if eC = ⌈n+t+1

2
⌉ and rC < t + 1 then

Lagrange-interpolate a from AC

for all j ∈ [1, n] do
send the message (Pd, τ, ready, C, a(j)) to Pj

upon a message (Pd, τ, ready, C, α) from Pm (first time):

if verify-point(C, i, m, α) then
AC ← AC ∪ {(m, α)}; rC ← rC + 1
if rC = t + 1 and eC < ⌈n+t+1

2
⌉ then

Lagrange-interpolate a from AC

for all j ∈ [1, n] do
send the message (Pd, τ, ready, C, a(j)) to Pj

else if rC = n− t− f then
si ← a(0)
output (Pd, τ, out, shared, C, si)

upon (Pd, τ, in, recover):

send the message (Pd, τ, help) to all the nodes
send all messages in B

upon a message (Pd, τ, help) from Pℓ:

if cℓ ≤ d(κ) and c ≤ (t + 1)d(κ) then
cℓ ← cℓ + 1; c← c + 1
send all messages of Bℓ

Figure 1. Protocol HybridVSS (Sharing step)

requests sent by each node Pℓ respectively. We also use the

following predicates in our protocol.

verify-poly(C, i, a) verifies that the given polynomial a of

Pi is consistent with the commitment C. Here, a(y) =∑t

ℓ=0
aℓy

ℓ is a degree t polynomial. The predicate is

true if and only if gaℓ =
∏t

j=0
(Cjℓ)

ij

for all ℓ ∈ [0, t].
verify-point(C, i,m, α) verifies that the given value α

corresponds to the polynomial evaluation f(m, i). It is

true if and only if gα =
∏t

j,ℓ=0
(Cjℓ)

mjiℓ

.



Analysis. The main theorem for HybridVSS is as follows.

Theorem 3.1: Assuming the hardness of the discrete-

logarithm problem, protocol HybridVSS implements asyn-

chronous verifiable secret sharing in the hybrid model for

n ≥ 3t + 2f + 1.

We need to show liveness, agreement, consistency, privacy,

and efficiency. We combine proof strategies from AVSS [17,

Sec. 3.3] and reliable broadcast [24, Sec. 3.3] to achieve this.

We next briefly discuss efficiency and refer readers to [25]

for a detailed proof.

Efficiency Discussion: A protocol execution without any

crashes has O(n2) message complexity and O(κn4) com-

munication complexity where the size of the message is

dominated by the matrix C having O(n2) entries. Using

a collision-resistant hash function, Cachin et al. [17, Sec.

3.4] suggest a way to reduce the communication complexity

to O(κn3), which remains applicable in our HybridVSS. In

the case of crashes, the recovery mechanism requires O(n2)
messages from the recovering node and O(n) messages

from each helper node. With the number of possible crashes

bounded by d(κ), the number of recoveries is bounded

by (t + 1)d(κ) and the total message and communication

complexity of HybridVSS are O(tdn2) and O(κtdn3) re-

spectively; we thus obtain a uniform polynomial bound on

the communication complexity.

4. Distributed Key Generation—DKG

HybridVSS requires a dealer (Pd) to select a secret and

to initiate a sharing. DKG, going one step further, generates

a secret in a completely distributed fashion, such that none

of the system nodes knows the secret, while any t+1 nodes

can combine their shares to determine it. Although it seems

that a DKG is just a system with n nodes running their VSSs

in parallel and summing all the received shares together at

the end, it is not that simple in an asynchronous setting.

Agreeing on t + 1 or more VSS instances such that all

of them will finish for all the honest nodes (the agreement

on a set problem [26]), and the difficulty of differentiating

between a slow node and a faulty node in the asynchronous

setting are the primary sources of the added complexity.

In our hybrid system model, with no timing assumption,

the node cannot wait for more than n − t − f VSSs

to finish. The adversary can certainly make agreeing on

a subset of size t + 1 among those nodes impossible,

by appropriately delaying its messages. Cachin et al. [17]

solves a similar agreement problem in their proactive refresh

protocol using a multi-valued validated Byzantine agreement

(MVBA) protocol. Known MVBA protocols [27] require

threshold signature and threshold coin-tossing primitives [7]

and the suggested algorithms for both of these primitives

require either a dealer or a DKG. As we aim to avoid

the former in this paper and the latter is our aim itself,

we cannot use their MVBA protocol. Randomization in the

form of distributed coin tossing or equivalent randomization

functionality is necessary for an expected constant-round

Byzantine agreement; it thwarts the attack possible with

an adversary knowing the pre-defined node selection order.

However, an efficient algorithm for dealerless distributed

coin tossing without a DKG is difficult to achieve3, and

we refrain from using randomized Byzantine agreement

protocols.

We follow a much simpler approach with the same

communication complexity as MVBA protocols. We use a

leader-initiated reliable broadcast system with a faulty-leader

change facility, inspired by Castro and Liskov’s view-change

protocol [23]. We choose this (optimistic phase + pessimistic

phase) approach, as we expect the Byzantine failures to be

infrequent in practice. The probability that the current leader

of the system is not behaving correctly is small and it is not

worth spending more time and bandwidth by broadcasting

proposals by all the nodes during every MVBA. With this

background, we now define and analyze our DKG protocol.

Protocol Description. In our DKG protocol, for session τ
and leader L, each node Pd selects a secret value sd and

shares it among the group using protocol Sh of HybridVSS

for session (Pd, τ). Each node finishes the DKG protocol by

outputting a (L, τ, DKG-completed, C, si) message, where

si and C are its share and the commitment respectively and

L = L or a subsequent leader

Definition 4.1: In session τ , protocol DKG in our hybrid

model having an asynchronous network of n ≥ 3t + 2f + 1
nodes with a t-limited Byzantine adversary and f -limited

crashes and network failures satisfies the following condi-

tions:

Liveness: All honest finally up nodes complete protocol

DKG in session τ , except with negligible probability.

Agreement: If some honest node completes protocol DKG

in session τ , then, except with negligible probability,

all honest finally up nodes will eventually complete

protocol DKG in session τ .

Consistency: Once an honest node completes the DKG

protocol for session τ , then there exists a fixed value s
such that, if an honest node Pi reconstructs zi in session

τ , then zi = s.

Privacy: If no honest node has started the Rec protocol,

then, except with negligible probability, the adversary

cannot compute the shared secret s.

Efficiency: The communication complexity for any instance

of DKG is d-uniformly bounded.

We assume that messages from all the honest and uncrashed

nodes are delivered by the adversary.

We first describe the optimistic phase of our DKG pro-

tocol. For each session τ , one among n nodes works as

3. Canetti and Rabin [14] define a dealerless distributed coin tossing
without a DKG; however, their protocol requires n

2 VSSs for each coin
toss and is consequently inefficient.



Optimistic phase for node Pi in session (τ) with Leader L
upon initialization:

eQ ← 0; rQ ← 0 for every Q
Q ← ∅; Q̂ ← ∅
M← R̂ ← n− t− f signed lead-ch messages for L
c← 0; cℓ ← 0 for all ℓ ∈ [1, n]
lcL ← 0 for each L; lcflag ← false; L++ ← π−1(L)
for all d ∈ [1, n] do

initialize extended-HybridVSS Sh protocol (Pd, τ)

upon (Pd, τ, out, shared, Cd, si,d,Rd) (first time):

Q̂ ← {Pd}; R̂ ← {Rd}
if |Q̂| = t + 1 and Q = ∅ then

if Pi = L then
send the message (L, τ, send, Q̂, R̂) to each Pj

else
delay ← delay(t); start timer(delay)

upon a message (L, τ, send,Q,R/M) from L (first time):

if verify-signature(Q,R/M) then

if Q = ∅ or Q = Q then
send the message (L, τ, echo,Q)sign to each Pj

upon a message (L, τ, echo,Q)sign from Pm (first time):

eQ ← eQ + 1
if eQ = ⌈n+t+1

2
⌉ and rQ < t + 1 then

Q ← Q; M← ⌈n+t+1
2
⌉ signed echo messages for Q

send the message (L, τ, ready,Q)sign to each Pj

upon a message (L, τ, ready,Q)sign from Pm(first time):

rQ ← rQ + 1
if rQ = t + 1 and eQ < ⌈n+t+1

2
⌉ then

Q ← Q; M← t + 1 signed ready messages for Q
send the message (L, τ, ready,Q)sign to each Pj

else if rQ = n− t− f then
stop timer, if any
wait for shared output-messages for each Pd ∈ Q
si ←

∑
Pd∈Q

si,d; ∀p,q : Cp,q ←
∏

Pd∈Q
(Cd)p,q

output (L, τ, DKG-completed, C, si)

upon timeout

if lcflag = false then

if Q = ∅ then
send the msg (τ, lead-ch, π(L), Q̂, R̂)sign to each Pj

else
send the msg (τ, lead-ch, π(L),Q,M)sign to each Pj

lcflag ← true

upon (L, τ, in, recover):

send the message (L, τ, help) to all the nodes.
send all messages in BL,τ

upon a message (L, τ, help) from Pℓ:

if cℓ ≤ d(κ) and c ≤ (t + 1)d(κ) then
cℓ ← cℓ + 1; c← c + 1
send all messages of Bℓ(L,τ)

Figure 2. DKG Protocol (Optimistic Phase)

Leader-change for node Pi in session (τ) with Leader L
upon a msg (τ, lead-ch,L,Q,R/M)sign from Pj(first time):

if L > L and verify-signature(Q,R/M) then

lc
L
← lc

L
+ 1; L++ ← min (L++,L)

if R/M = R then Q̂ ← Q; R̂ ← R
else Q ← Q; M←M
if (

∑
lcL = t + 1 and lcflag = false) then

if Q = ∅ then
send the msg (τ, lead-ch,L++, Q̂, R̂) to each Pj

else
send the msg (τ, lead-ch,L++,Q,M) to each Pj

else if (lc
L

= n− t− f ) then

M← R̂ ← n− t− f signed lead-ch messages for L
L ← L; lcL ← 0; L++ ← π−1(L); lcflag = false
if Pi = L then

if Q = ∅ then
send the message (L, τ, send, Q̂, R̂) to each Pj

else
send the message (L, τ, send,Q,M) to each Pj

else
delay ← delay(t); start timer(delay)

Figure 3. DKG Protocol (Pessimistic Phase)

a leader. The leader L, once it finishes the VSS proposal

by t + 1 nodes with (Pd, τ, out, shared, Cd, si,d), broad-

casts the n − t − f ready messages (set R̂) it received

for each of those t + 1 finished VSSs (set Q̂). Nodes

include signatures with ready messages to enable the leader

to provide a validity proof for its proposal. In this ex-

tended HybridVSS protocol, shared messages look like

(Pd, τ, out, shared, Cd, si,d,Rd), where a set Rd includes

n− t− f signed ready messages for session (Pd, τ). Once

this broadcast completes, each node knows t + 1 VSS

instances to wait for. Once a node Pi finishes those, it sums

the shares si,d to obtain its final share si.

If the leader is faulty and does not proceed with the

protocol or sends arbitrary messages, the protocol enters into

a pessimistic phase. Here, other nodes use a leader-change

mechanism to change their leader with a pre-defined cyclic

permutation (π) and provide liveness without damaging

system safety. Every unsatisfied node sends a signed leader-

change (lead-ch) request to all the nodes for the next leader

π(L) if it receives an invalid message from the existing

leader L or if its timer timed out. Timeouts are based on the

function delay(t) described in § 2.1. When a node collects

t+1 lead-ch messages for leaders > L, it is confirmed that

at least one honest node is unsatisfied and it sends a lead-ch

message to all the nodes for the smallest leader among those

requested, if it has not done that yet. Once a node receives

n− t− f lead-ch requests for a leader L > L, it accepts L
as the new leader and enters into the optimistic phase. The

new leader also enters into the optimistic phase and sends

a send message for set Q if it is non-empty or else for

set Q̂. Set M contains ⌈n+t+1

2
⌉ signed echo messages or



t + 1 signed ready messages for the associated set Q of

completed VSSs. Set Q avoids two honest nodes finishing

with two different VSSs sets, and set M avoids false Q sets

from the dishonest nodes. While sending its proposal, L also

includes lead-ch signatures received from n−t−f nodes to

prove its validity to the nodes who have not received enough

lead-ch messages. As in HybridVSS, the set B contains

all outgoing messages at a node along with their intended

recipients and Bℓ represents the subset of messages destined

for node Pℓ. Counters c and cℓ keep track of the numbers

of overall help requests and help requests sent by each node

Pℓ respectively. Figure 2 and Figure 3 present the optimistic

and the pessimistic phases of the DKG protocol respectively.

Protocol Rec remains exactly the same.

Analysis. The main theorem for our DKG is as follows.

Theorem 4.1: Assuming the hardness of the discrete-

logarithm problem, protocol DKG provides an asynchronous

distributed key generation mechanism in the hybrid model

for n ≥ 3t + 2f + 1.

We need to show liveness, agreement, consistency, privacy,

and efficiency of DKG. Here, we describe the most impor-

tant liveness and efficiency properties and refer readers to

[25] for the detailed analysis.

Liveness: In HybridVSS, if the dealer is honest and finally

up, then all honest finally up nodes complete the sharing

initiated by it. With n− t− f honest finally up nodes in the

system, each honest finally up node will eventually complete

sharings proposed by at least t + 1 nodes, as required. If

the leader is honest and uncrashed, and completes t + 1
HybridVSSs, before a timer—started after completing t + 1
HybridVSSs—expires at an honest node (optimistic phase),

then it broadcasts its proposal and based on the liveness

property of the reliable broadcast [24], each honest finally

up node delivers the same verifiable proposal. To finish,

according to the HybridVSS agreement properties, all honest

finally up nodes complete protocol Sh for nodes in this

proposal.

If the leader is compromised, crashed or does not finish

t + 1 Sh protocols before a timeout at an honest node,

then a signed lead-ch request is broadcasted by that honest

node (pessimistic phase). After receiving n − t − f lead-

ch requests, the new leader takes over and the protocol

reenters the optimistic phase. As the number of crashes

is polynomially bounded and the network eventually gets

repaired resulting in message delays becoming eventually

bounded by delay(t), an honest finally up leader will even-

tually reliably broadcast a proposal and protocol DKG will

complete. The requirement of n−t−f lead-ch requests for

a leader replacement makes sure that nodes do not complete

the leader-change too soon. An honest node sends a signed

lead-ch message for the smallest leader (among the received

set) if it receives t + 1 lead-ch messages, even if it has not

observed any fault, as this indicates that at least one honest

node has observed some fault and the node does not want

to start the leader-change too late.

Efficiency: The message and communication complexi-

ties of the n HybridVSS Sh protocols in DKG are O(tdn3)
and O(κtdn4) respectively. If the DKG protocol completes

without entering into the pessimistic phase, then the system

only needs an additional reliable broadcast of message of

size O(κn), message complexity O(tdn2) and communica-

tion complexity O(κtdn3). As a result, the optimal message

and communication complexities for the DKG protocol are

O(tdn3) and O(κtdn4) respectively. In the pessimistic case,

the total number of leader changes is bounded by O(d). Each

leader change involves O(tdn2) messages and O(κtdn3)
communication bits. For each faulty leader, O(tdn2) mes-

sages and O(κtdn3) bits are communicated during its ad-

ministration. Therefore, in the worst case, O(td2n2) mes-

sages and O(κtd2n3) bits are communicated before the

DKG completes and worst case message and communication

complexities of the DKG protocol are O(tdn2(n + d)) and

O(κtdn3(n + d)) respectively. Note that considering just

a t-limited Byzantine adversary (and not also crashes and

link failures), the above complexities become O(n3) and

O(κn4) respectively. These are same as the complexities of

the proactive refresh protocol for AVSS [17].

5. Realizing Proactiveness

In proactive security, nodes modify their shares at phase

changes such that an adversary’s knowledge of t shares from

one phase becomes useless in the next phase. Here, although

the adversary is restricted to t nodes during any phase, it may

corrupt more than t nodes in its complete lifetime without

learning anything about the secret. In this section, to realize

proactiveness in our DKG system, we introduce the notion

of phase in our hybrid model (§2) and design share renewal

and recovery protocols.

5.1. System Model

Common Phase. In the asynchronous communication

model, without a common clock, realizing the concept of a

common phase is difficult. Similar to Cachin et al. [17], we

use local clocks with clock ticks at pre-defined intervals. The

number of clock ticks received by a honest node defines its

local phase. In order to achieve the required synchronization

without hampering safety, nodes start the proactive protocol

with their local clock tick, but wait for t other nodes to start

the phase before proceeding with it.

Due to the eventual nature of the liveness condition, any

timing constraint always affects liveness of an asynchronous

protocol. A share renewal protocol in our model might not

terminate within the same phase. It is possible to achieve

liveness at the cost of safety/privacy by continuing with

the shares from the previous phase until new shares are



determined. However, we give importance to safety rather

than liveness and system nodes delete their shares as the

renewal protocol starts; there is no phase overlap.

Byzantine Adversary. The adversary can corrupt at most t
nodes in any local phase τ ≥ 0. We assume that it is possible

to remove the adversary from a node by rebooting it in a

trusted way using a read-only device. As the adversary could

have extracted the private key from a recovering node, once

rebooted the node should ask the CA to put its old certificate

on its certificate revocation list, generate a new key pair and

get the new public key signed.

To maintain liveness in a proactive system with simultane-

ous Byzantine and crash-recovery nodes, we assume that the

crash-recovery time is more than the message transfer delay

between two uncrashed nodes; specifically, the time the

adversary takes to shift from one crashed node to another is

larger than required by a send message between two honest

uncrashed nodes. Note that this assumption is required ex-

clusively due to crash-recovery and link failure assumption.

We justify it in §5.2. The adversary may continue to hold a

node in consecutive phases.

It is also possible to use an asynchronous proactive secure

message transmission mechanism [28] to avoid frequent

public-private key pair modifications. However, this requires

a hardware secure co-processor.

Forward Secrecy. If a private communication channel be-

tween two honest nodes is not forward secret, the adversary

may decipher their secret communication by compromising

one of them in a later phase. To overcome this problem, we

use an ephemeral Diffie-Hellman cipher suite while creating

TLS links and reconstruct them at the start of each new

phase. This makes sure that a message sent in a local phase

τ of the sender is delivered to the receiver in the same local

phase or it is lost.

5.2. Share Renewal Protocol

A share renewal protocol enables DKG nodes to renew

their shares such that protocol Rec will output the same

secret and the adversary does not learn anything about

it. From a share renewal protocol, we expect liveness,

consistency, privacy and efficiency similar to the DKG

protocol, under the assumption that the adversary delivers

all associated messages within phase τ . We refer readers

to [25] for a detailed definition. We design a share renewal

protocol by making three modifications to our DKG, which

are motivated by the refresh protocol in [17].

• On receiving a clock tick for phase τ , instead of running

the HybridVSS protocol for a random key, node Pi

reshares its share si,τ−1 from phase τ − 1. It then

erases the old share, the bivariate polynomial used

during resharing, and the univariate polynomials from

the send messages, and broadcasts its clock tick. While

retransmitting send messages during a node recovery,

only the commitments are sent.

• A node waits for t + 1 identical clock ticks before

proceeding with protocol Sh instances.

• Once a node Pi receives n−t−f ready messages for a

decided set Q, instead of adding shares si,d for Pd ∈ Q,

it Lagrange-interpolates them for index 0 to obtain the

new share. Commitments are accordingly modified as

Vℓ =
∏

Pd∈Q
((Cd,τ )ℓ0)

λ
Q,0

d for ℓ ∈ [0, t].

We delete the univariate polynomials from the send mes-

sages stored to facilitate recovery, as their compromise can

lead to compromise of the node’s previous-phase share and

subsequently the system’s secret. With the assumption that

t+1 honest and uncrashed nodes receive the send messages

transmitted by an honest and uncrashed node before the

adversary can crash them, liveness is guaranteed. Note that

each honest node need only receive t + 1 shares of its

univariate polynomial among the ⌈(n + t + 1)/2⌉ echo

messages in order that the protocol Sh can continue. We

refer readers to [25] for a detailed analysis.

5.3. Share Recovery Protocol

The adversary may crash, isolate or compromise some of

the nodes. This may get detected by the node itself or by the

system as a whole using the techniques beyond our scope.

After detection of crash and compromise, a node will be

rebooted using read-only memory, which however does not

provide it with its share. In a proactive DKG system, the

ability of a node to recover its lost share, when rebooted as

above or alienated from the part of the network, must be

ensured. Otherwise, the adversary can destroy the complete

system by gradually crashing or isolating n − t nodes.

The recover and help message in our HybridVSS, DKG

and share renewal protocols suffice to handle share recov-

eries. To achieve automatic share recovery upon reboot, we

add a recover message to nodes’ reboot procedure.

6. Group Modification Protocols

On a long term basis, it is inevitable that the set of nodes

in the system will need to be modified; new nodes may join

or old nodes may leave. To maintain the resilience bound

n ≥ 3t + 2f + 1, this may also lead to a modification in

the security threshold t or the crash-limit f of the system.

Here, we present protocols to achieve node addition, node

removal, security threshold and crash-limit modification.

6.1. Group Modification Agreement

For group modification protocols, it is important to in-

clude a mechanism to propose and agree on group modi-

fication proposals. Leaving this to node administrators can



not only create bottlenecks in the system, but it can also

provide new avenues to attack it. Using reliable broadcast

methodology, we propose a simple agreement protocol for

this. To avoid inefficient atomic or causal broadcast prim-

itives [29], we impart commutativity to the group modifi-

cation proposals. Node addition and removal operations are

commutative in nature; however, the threshold and crash-

limit modifications are not. We solve this problem by attach-

ing threshold and crash-limit modification requests to node

addition or removal proposals. With every node addition or

removal proposal, a proposer has to specify whether change

in the size of the group made by its proposal should affect

the security-threshold or the crash-limit. An interested node

will send such a proposal to all the nodes and nodes who

agree with the proposal continue with echo messages from

a reliable broadcast [24]. Once it receives n − t − f ready

messages, a node adds the proposal into its modification

queue. Like other proactive protocols, assuming that the

n− t−f nodes finish with the same set of proposals during

a phase, liveness is assured; additionally, safety is always

assured.

6.2. Node Addition

We can increase the redundancy of the system by adding

new nodes. It is easily possible to provide shares to the

added nodes at the start of a new phase by including those

into the list of nodes. Although the new nodes cannot

contribute with send messages, for any node-additions with

new threshold smaller than the old honest-uncrashed count,

sufficient renewal proposals are available.

However, considering possible large durations of phases

or even the absence of proactivity, we need a node-addition

protocol that does not rely on share renewal. We obtain one

by making three small modifications to our DKG.

• On receiving a Node-Add request, instead of running

protocol Sh of HybridVSS for a random key, node Pi

reshares its current share si,τ and broadcasts the Node-

Add request received. It then waits for t other identical

Node-Add requests before proceeding.

• Once a node Pi receives n − t − f ready mes-

sages for a decided set Q, it Lagrange-interpolates

si,d for Pd ∈ Q for index new and provides sub-

share si,new to node Pnew with commitments Vℓ =∏
Pd∈Q

((Cd,τ )ℓ,new)λ
Q,new

d for ℓ ∈ [0, t].
• Node Pnew, upon obtaining t + 1 shares for same

commitment vector Vℓ for ℓ ∈ [0, t], interpolates them

for index 0 to obtain its share snew.

A subshare si,new provided by node Pi is actually a share of

a t-degree polynomial h(x) such that h(0) = snew. We refer

readers to [25] for a detailed analysis. Further, it is possible

to add multiple nodes simultaneously by running last two of

the above modification separately for each node.

6.3. Node Removal

This protocol involves removing a node from the system

such that it should no longer be able to reconstruct the secret.

Without modifying the shares for the other nodes, it is not

possible to remove a node in the middle of a phase and we

are restricted to removing it at the start of a new phase. To

remove a node from the group involves simply not including

it in the next share renewal protocol. An honest node should

not carry out a node removal if that would invalidate the

resilience bound n ≥ 3t + 2f + 1.

6.4. Security Threshold and Crash-Limit Modifica-

tion

Security threshold and crash-limit modification involves

changing the threshold limit t or the crash-limit f of the

system. For the same reason as node removal, it is not

possible to modify the threshold and crash limits in the

middle of a phase. With their lack of commutativity, we

avoid direct threshold t and crash-limit f modifications. We

modify t and f at the phase-change based on the all the node

addition and removal requests confirmed during the previous

phase. Nodes update their t and f values accordingly and

start their HybridVSS instances with the updated parameter

values. As a feature of the renewal protocol, the threshold

value can be easily changed by just correctly changing the

degrees of the resharing polynomials.

7. System Architecture

System Design. In our deterministic state machine design,

nodes moves from one state to another based on messages

received. Messages are categorized into three types: operator

messages, network messages and timer messages. Operator

messages, which are of types in and out, define interac-

tions between nodes and their operators. Network messages

realize protocol flows between nodes. As we use a weak

synchrony assumption to maintain liveness, we also include

timer messages in the form of start timer and stop timer,

which work according to the delay(t) function described in

§ 2.1.

Defence against DoS and Sybil Attacks. The distributed

nature of DKG provides an inherent protection against DoS

attacks and the inclusion of crashed nodes and network fail-

ure assumptions makes DoS attacks less feasible. Although

leaders might become primary targets, we mitigate this issue

with an efficient leader-changing mechanism. Further, as all

valid communication is done over TLS links, nodes can

easily reject messages arriving from non-system entities.

Sybil attacks are not a major concern, as ad-hoc additions of

nodes is not a feature of our system. Nodes are added using

the group modification agreement protocol, which involves

administrative interaction at each node.



8. Concluding Remarks

We have designed the first DKG protocol for use over

the Internet. We proposed a hybrid system model and

demonstrated its applicability with a rigorous analysis. We

established the requirement of Byzantine agreement for

asynchronous DKG and presented a DKG protocol in our

hybrid model. Realizing the importance of proactive security

and group modifications, we defined protocols for them.
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